Back to Search
Start Over
Diversity of Bacterial Endosymbionts Associated with Macrosteles Leafhoppers Vectoring Phytopathogenic Phytoplasmas
- Source :
- Applied and Environmental Microbiology. 79:5013-5022
- Publication Year :
- 2013
- Publisher :
- American Society for Microbiology, 2013.
-
Abstract
- Here, we investigate the endosymbiotic microbiota of the Macrosteles leafhoppers M. striifrons and M. sexnotatus , known as vectors of phytopathogenic phytoplasmas. PCR, cloning, sequencing, and phylogenetic analyses of bacterial 16S rRNA genes identified two obligate endosymbionts, “ Candidatus Sulcia muelleri” and “ Candidatus Nasuia deltocephalinicola,” and five facultative endosymbionts, Wolbachia , Rickettsia , Burkholderia , Diplorickettsia , and a novel bacterium belonging to the Rickettsiaceae , from the leafhoppers. “ Ca . Sulcia muelleri” and “ Ca . Nasuia deltocephalinicola” exhibited 100% infection frequencies in the host species and populations and were separately harbored within different bacteriocytes that constituted a pair of coherent bacteriomes in the abdomen of the host insects, as in other deltocephaline leafhoppers. Wolbachia , Rickettsia , Burkholderia , Diplorickettsia , and the novel Rickettsiaceae bacterium exhibited infection frequencies at 7%, 31%, 12%, 0%, and 24% in M. striifrons and at 20%, 0%, 0%, 20%, and 0% in M. sexnotatus , respectively. Although undetected in the above analyses, phytoplasma infections were detected in 16% of M. striifrons and 60% of M. sexnotatus insects by nested PCR of 16S rRNA genes. Two genetically distinct phytoplasmas, namely, “ Candidatus Phytoplasma asteris,” associated with aster yellows and related plant diseases, and “ Candidatus Phytoplasma oryzae,” associated with rice yellow dwarf disease, were identified from the leafhoppers. These results highlight strikingly complex endosymbiotic microbiota of the Macrosteles leafhoppers and suggest ecological interactions between the obligate endosymbionts, the facultative endosymbionts, and the phytopathogenic phytoplasmas within the same host insects, which may affect vector competence of the leafhoppers.
- Subjects :
- DNA, Bacterial
Male
Molecular Sequence Data
Sequence Homology
Bacterial Physiological Phenomena
Polymerase Chain Reaction
Applied Microbiology and Biotechnology
Rickettsiaceae
Hemiptera
Japan
Species Specificity
RNA, Ribosomal, 16S
Botany
Invertebrate Microbiology
Animals
Symbiosis
Phylogeny
Genetics
Nasuia deltocephalinicola
Bacteria
Ecology
Obligate
biology
Sequence Analysis, DNA
biochemical phenomena, metabolism, and nutrition
biology.organism_classification
Aster yellows
Macrosteles
Phytoplasma
Candidatus
bacteria
Female
Wolbachia
Food Science
Biotechnology
Subjects
Details
- ISSN :
- 10985336 and 00992240
- Volume :
- 79
- Database :
- OpenAIRE
- Journal :
- Applied and Environmental Microbiology
- Accession number :
- edsair.doi.dedup.....4bd756ebe8f7bd58d1e4655964a98d7f
- Full Text :
- https://doi.org/10.1128/aem.01527-13