Back to Search
Start Over
Deficient LEF1 expression is associated with lithium resistance and hyperexcitability in neurons derived from bipolar disorder patients
- Source :
- Molecular Psychiatry, Molecular Psychiatry, Nature Publishing Group, 2021, Online ahead of print. ⟨10.1038/s41380-020-00981-3⟩, Molecular Psychiatry, 2021, Online ahead of print. ⟨10.1038/s41380-020-00981-3⟩
- Publication Year :
- 2021
- Publisher :
- HAL CCSD, 2021.
-
Abstract
- International audience; Bipolar disorder (BD) is a psychiatric condition characterized by depressive and manic episodes that affect 2% of the world population. The first-line long-term treatment for mood stabilization is lithium (Li). Induced pluripotent stem cell modeling of BD using hippocampal dentate gyrus-like neurons derived from Li-responsive (LR) and Li-non-responsive (NR) patients previously showed neuronal hyperexcitability. Li treatment reversed hyperexcitability only on the LR neurons. In this study we searched for specific targets of Li resistance in NR neurons and found that the activity of Wnt/β-catenin signaling pathway was severely affected, with a significant decrease in expression of LEF1. Li targets the Wnt/βcatenin signaling pathway by inhibiting GSK-3β and releasing β-catenin that forms a nuclear complex with TCF/LEF1, activating the Wnt/β-catenin transcription program. Therefore, we propose that downregulation of LEF1 may account for Li resistance in NR neurons. Our results show that valproic acid (VPA), a drug used to treat NR patients that also acts downstream of GSK-3β, upregulated LEF1 and Wnt/β-catenin gene targets, increased transcriptional activity of complex β-catenin/TCF/LEF1 and reduced excitability in NR neurons. Additionally, decreasing LEF1 expression in control neurons using shLEF1 caused hyperexcitability, confirming that the impact of VPA on excitability in NR neurons was connected to changes in LEF1 and in the Wnt/β-catenin pathway. Our results suggest that LEF1 may be a useful target for the discovery of new drugs for BD treatment.
- Subjects :
- 0301 basic medicine
medicine.medical_specialty
Lithium (medication)
[SDV.MHEP.PSM] Life Sciences [q-bio]/Human health and pathology/Psychiatrics and mental health
Hippocampal formation
03 medical and health sciences
Cellular and Molecular Neuroscience
0302 clinical medicine
Downregulation and upregulation
Transcription (biology)
Internal medicine
medicine
[SDV.BBM] Life Sciences [q-bio]/Biochemistry, Molecular Biology
[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology
Induced pluripotent stem cell
Molecular Biology
Valproic Acid
Chemistry
Wnt signaling pathway
3. Good health
Psychiatry and Mental health
030104 developmental biology
Endocrinology
[SDV.MHEP.PSM]Life Sciences [q-bio]/Human health and pathology/Psychiatrics and mental health
embryonic structures
Signal transduction
030217 neurology & neurosurgery
medicine.drug
Subjects
Details
- Language :
- English
- ISSN :
- 13594184 and 14765578
- Database :
- OpenAIRE
- Journal :
- Molecular Psychiatry, Molecular Psychiatry, Nature Publishing Group, 2021, Online ahead of print. ⟨10.1038/s41380-020-00981-3⟩, Molecular Psychiatry, 2021, Online ahead of print. ⟨10.1038/s41380-020-00981-3⟩
- Accession number :
- edsair.doi.dedup.....4ba7b83c172317af60605a29e5bdefeb