Back to Search Start Over

Low resolution lidar-based multi object tracking for driving applications

Authors :
Beatrice Masini
Joan Sola
Victor Vaquero
Alberto Sanfeliu
Juan Andrade-Cetto
Iván del Pino
Francesc Moreno-Noguer
Consejo Superior de Investigaciones Científicas (España)
Ministerio de Economía y Competitividad (España)
European Commission
Ministerio de Educación (España)
Institut de Robòtica i Informàtica Industrial
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
Universitat Politècnica de Catalunya. VIS - Visió Artificial i Sistemes Intel.ligents
Universitat Politècnica de Catalunya. ROBiri - Grup de Robòtica de l'IRI
Universitat Politècnica de Catalunya. VIS - Visió Artificial i Sistemes Intel·ligents
Source :
Digital.CSIC. Repositorio Institucional del CSIC, instname, ROBOT 2017: Third Iberian Robotics Conference ISBN: 9783319708324, ROBOT (1), Advances in Intelligent Systems and Computing, Advances in Intelligent Systems and Computing-ROBOT 2017: Third Iberian Robotics Conference, Third Iberian Robotics Conference, Vol 694 of Advances in Intelligent Systems and Computing, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Recercat. Dipósit de la Recerca de Catalunya
Publication Year :
2017
Publisher :
Springer Nature, 2017.

Abstract

Trabajo presentado a la Third Iberian Robotics Conference, celebrada en Sevilla del 22 al 24 de noviembre de 2017.<br />Vehicle detection and tracking in real scenarios are key com- ponents to develop assisted and autonomous driving systems. Lidar sen- sors are specially suitable for this task, as they bring robustness to harsh weather conditions while providing accurate spatial information. How- ever, the resolution provided by point cloud data is very scarce in com- parison to camera images. In this work we explore the possibilities of Deep Learning (DL) methodologies applied to low resolution 3D lidar sensors such as the Velodyne VLP-16 (PUCK), in the context of vehicle detection and tracking. For this purpose we developed a lidar-based sys- tem that uses a Convolutional Neural Network (CNN), to perform point- wise vehicle detection using PUCK data, and Multi-Hypothesis Extended Kalman Filters (MH-EKF), to estimate the actual position and veloci- ties of the detected vehicles. Comparative studies between the proposed lower resolution (VLP-16) tracking system and a high-end system, using Velodyne HDL-64, were carried out on the Kitti Tracking Benchmark dataset. Moreover, to analyze the influence of the CNN-based vehicle detection approach, comparisons were also performed with respect to the geometric-only detector. The results demonstrate that the proposed low resolution Deep Learning architecture is able to successfully accom- plish the vehicle detection task, outperforming the geometric baseline approach. Moreover, it has been observed that our system achieves a similar tracking performance to the high-end HDL-64 sensor at close range. On the other hand, at long range, detection is limited to half the distance of the higher-end sensor.<br />This work has been supported by the Spanish Ministry of Economy and Competitiveness projects ROBINSTRUCT (TIN2014-58178-R) and COLROBTRANSP (DPI2016-78957-R), by the Spanish Ministry of Education FPU grant (FPU15/04446), the Spanish State Research Agency through the María de Maeztu Seal of Excellence to IRI (MDM-2016-0656) and by the EU H2020 project LOGIMATIC (H2020-Galileo-2015-1-687534).

Details

ISBN :
978-3-319-70832-4
978-3-319-70833-1
ISSN :
21945357 and 21945365
ISBNs :
9783319708324 and 9783319708331
Database :
OpenAIRE
Journal :
Digital.CSIC. Repositorio Institucional del CSIC, instname, ROBOT 2017: Third Iberian Robotics Conference ISBN: 9783319708324, ROBOT (1), Advances in Intelligent Systems and Computing, Advances in Intelligent Systems and Computing-ROBOT 2017: Third Iberian Robotics Conference, Third Iberian Robotics Conference, Vol 694 of Advances in Intelligent Systems and Computing, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Recercat. Dipósit de la Recerca de Catalunya
Accession number :
edsair.doi.dedup.....4ba57aab39a2103d544dbf40e95a42cb