Back to Search Start Over

Convex nonnegative matrix factorization with missing data

Authors :
Cédric Févotte
Valentin Emiya
Ronan Hamon
éQuipe AppRentissage et MultimediA [Marseille] (QARMA)
Laboratoire d'informatique Fondamentale de Marseille (LIF)
Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
Signal et Communications (IRIT-SC)
Institut de recherche en informatique de Toulouse (IRIT)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université de Toulouse (UT)-Toulouse Mind & Brain Institut (TMBI)
Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)
Joseph Louis LAGRANGE (LAGRANGE)
Université Nice Sophia Antipolis (1965 - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)
ANR-14-CE27-0002,MAD,Inpainting de données audio manquantes(2014)
Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU)
Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées
Université Nice Sophia Antipolis (... - 2019) (UNS)
Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
Aix-Marseille Université - AMU (FRANCE)
Centre National de la Recherche Scientifique - CNRS (FRANCE)
Institut National Polytechnique de Toulouse - INPT (FRANCE)
Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Université Toulouse - Jean Jaurès - UT2J (FRANCE)
Université Toulouse 1 Capitole - UT1 (FRANCE)
Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Source :
HAL, IEEE International Workshop on Machine Learning for Signal Processing, IEEE International Workshop on Machine Learning for Signal Processing, Sep 2016, Vietri sul Mare, Salerno, Italy, MLSP

Abstract

International audience; Convex nonnegative matrix factorization (CNMF) is a variant of nonnegative matrix factorization (NMF) in which the components are a convex combination of atoms of a known dictionary. In this contribution, we propose to extend CNMF to the case where the data matrix and the dictionary have missing entries. After a formulation of the problem in this context of missing data, we propose a majorization-minimization algorithm for the solving of the optimization problem incurred. Experimental results with synthetic data and audio spectrograms highlight an improvement of the performance of reconstruction with respect to standard NMF. The performance gap is particularly significant when the task of reconstruction becomes arduous, e.g. when the ratio of missing data is high, the noise is steep, or the complexity of data is high.

Details

Database :
OpenAIRE
Journal :
HAL, IEEE International Workshop on Machine Learning for Signal Processing, IEEE International Workshop on Machine Learning for Signal Processing, Sep 2016, Vietri sul Mare, Salerno, Italy, MLSP
Accession number :
edsair.doi.dedup.....4b9a52af733a2235b6cfb5a23c6fb4f9