Back to Search Start Over

Improved running economy and increased hemoglobin mass in elite runners after extended moderate altitude exposure

Authors :
Philo U. Saunders
Christopher J. Gore
Allan G. Hahn
Richard D. Telford
David B. Pyne
Source :
Journal of Science and Medicine in Sport. 12:67-72
Publication Year :
2009
Publisher :
Elsevier BV, 2009.

Abstract

There is conflicting evidence whether hypoxia improves running economy (RE), maximal O(2) uptake (V(O)(2max)), haemoglobin mass (Hb(mass)) and performance, and what total accumulated dose is necessary for effective adaptation. The aim of this study was to determine the effect of an extended hypoxic exposure on these physiological and performance measures. Nine elite middle distance runners were randomly assigned to a live high-train low simulated altitude group (ALT) and spent 46+/-8 nights (mean+/-S.D.) at 2860+/-41m. A matched control group (CON, n=9) lived and trained near sea level ( approximately 600m). ALT decreased submaximal V(O)(2) (Lmin(-1)) (-3.2%, 90% confidence intervals, -1.0% to -5.2%, p=0.02), increased Hb(mass) (4.9%, 2.3-7.6%, p=0.01), decreased submaximal heart rate (-3.1%, -1.8% to -4.4%, p=0.00) and had a trivial increase in V(O)(2max) (1.5%, -1.6 to 4.8; p=0.41) compared with CON. There was a trivial correlation between change in Hb(mass) and change in V(O)(2max) (r=0.04, p=0.93). Hypoxic exposure of approximately 400h was sufficient to improve Hb(mass), a response not observed with shorter exposures. Although total O(2) carrying capacity was improved, the mechanism(s) to explain the lack of proportionate increase in V(O)(2max) were not identified.

Details

ISSN :
14402440
Volume :
12
Database :
OpenAIRE
Journal :
Journal of Science and Medicine in Sport
Accession number :
edsair.doi.dedup.....4b8c86137509bf992c85012557641a4e
Full Text :
https://doi.org/10.1016/j.jsams.2007.08.014