Back to Search Start Over

Laser-induced UV photodissociation of 2-bromo-2-nitropropane: dynamics of OH and Br formation

Authors :
Ankur Saha
Hari P. Upadhyaya
Prakash D. Naik
Awadhesh Kumar
Monali Kawade
Source :
The Journal of chemical physics. 134(4)
Publication Year :
2011

Abstract

Photoexcitation of 2-bromo-2-nitropropane (BNP) at 248 and 193 nm generates OH, Br, and NO(2) among other products. The OH fragment is detected by laser-induced fluorescence spectroscopy, and its translational and internal state distributions (vibration, rotation, spin-orbit, and Λ-doubling components) are probed. At both 248 and 193 nm, the OH fragment is produced translationally hot with the energy of 10.8 and 17.2 kcal∕mol, respectively. It is produced vibrationally cold (v" = 0) at 248 nm, and excited (v" = 1) at 193 nm with a vibrational temperature of 1870 ± 150 K. It is also generated with rotational excitation, rotational populations of OH(v" = 0) being characterized by a temperature of 550 ± 50 and 925 ± 100 K at 248 and 193 nm excitation of BNP, respectively. The spin-orbit components of OH(X(2)Π) are not in equilibrium on excitation at 193 nm, but the Λ-doublets are almost in equilibrium, implying no preference for its π lobe with respect to the plane of rotation. The NO(2) product is produced electronically excited, as detected by measuring UV-visible fluorescence, at 193 nm and mostly in the ground electronic state at 248 nm. The Br product is detected employing resonance-enhanced multiphoton ionization with time-of-flight mass spectrometer for better understanding of the dynamics of dissociation. The forward convolution analysis of the experimental data has provided translational energy distributions and anisotropy parameters for both Br((2)P(3∕2)) and Br∗((2)P(1∕2)). The average translational energies for the Br and Br∗ channels are 5.0 ± 1.0 and 6.0 ± 1.5 kcal∕mol. No recoil anisotropies were observed for these products. Most plausible mechanisms of OH and Br formation are discussed based on both the experimental and the theoretical results. Results suggest that the electronically excited BNP molecules at 248 and 234 nm relax to the ground state, and subsequently dissociate to produce OH and Br through different channels. The mechanism of OH formation from BNP on excitation at 193 nm is also discussed.

Details

ISSN :
10897690
Volume :
134
Issue :
4
Database :
OpenAIRE
Journal :
The Journal of chemical physics
Accession number :
edsair.doi.dedup.....4b49f6ac899dc8f661c0ee37bdc2f438