Back to Search Start Over

On the shape of giant soap bubbles

Authors :
Etienne Reyssat
David Quéré
Caroline Cohen
Christophe Clanet
Baptiste Darbois Texier
Jacco H. Snoeijer
Laboratoire d'hydrodynamique (LadHyX)
Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)
Physique et mécanique des milieux hétérogenes (PMMH (UMR_7636))
Université Paris Diderot - Paris 7 (UPD7)-ESPCI ParisTech-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
University of Twente [Netherlands]
Laboratoire de Physique et Mécanique des Milieux Hétérogènes (LPMMH)
Université Pierre et Marie Curie - Paris 6 (UPMC)-ESPCI ParisTech-Centre National de la Recherche Scientifique (CNRS)
École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
Physique et mécanique des milieux hétérogenes (UMR 7636) (PMMH)
Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Physics of Fluids
Source :
Proceedings of the National Academy of Sciences of the United States of America, Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2017, 114 (10), pp.2515-2519. ⟨10.1073/pnas.1616904114⟩, Proceedings of the National Academy of Sciences of the United States of America (PNAS), 114(10), 2515-2519. National Academy of Sciences, Proceedings of the National Academy of Sciences of the United States of America, 114(10), 2515-2519. National Academy of Sciences
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

We study the effect of gravity on giant soap bubbles and show that it becomes dominant above the critical size [Formula: see text], where [Formula: see text] is the mean thickness of the soap film and [Formula: see text] is the capillary length ([Formula: see text] stands for vapor-liquid surface tension, and [Formula: see text] stands for the liquid density). We first show experimentally that large soap bubbles do not retain a spherical shape but flatten when increasing their size. A theoretical model is then developed to account for this effect, predicting the shape based on mechanical equilibrium. In stark contrast to liquid drops, we show that there is no mechanical limit of the height of giant bubble shapes. In practice, the physicochemical constraints imposed by surfactant molecules limit the access to this large asymptotic domain. However, by an exact analogy, it is shown how the giant bubble shapes can be realized by large inflatable structures.

Details

Language :
English
ISSN :
00278424 and 10916490
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences of the United States of America, Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2017, 114 (10), pp.2515-2519. ⟨10.1073/pnas.1616904114⟩, Proceedings of the National Academy of Sciences of the United States of America (PNAS), 114(10), 2515-2519. National Academy of Sciences, Proceedings of the National Academy of Sciences of the United States of America, 114(10), 2515-2519. National Academy of Sciences
Accession number :
edsair.doi.dedup.....4b3ce09fdfd75d69475d329ab0e5c2b3
Full Text :
https://doi.org/10.1073/pnas.1616904114⟩