Back to Search
Start Over
Synthesis and Characterization of [n]CPP (n = 5, 6, 8, 10, and 12) Radical Cation and Dications: Size-Dependent Absorption, Spin, and Charge Delocalization
- Source :
- Journal of the American Chemical Society. 138:338-344
- Publication Year :
- 2015
- Publisher :
- American Chemical Society (ACS), 2015.
-
Abstract
- Radical cations and dications of [n]cyclo-p-phenylenes ([n]CPPs, n = 5, 6, 10, and 12), which are the models of those of linear oligo-p-phenylenes without a terminus, were synthesized as hexafluoroantimonate salts by the one- and two-electron chemical oxidation of CPP by NOSbF6 or SbF5. The radical cations, [n]CPP(•+), and dications, [n]CPP(2+), exhibited remarkable bathochromic shifts in their UV-vis-NIR absorption bands, suggesting that [n]CPP(•+) and larger [n]CPP(2+) exhibit longer polyene character than the shorter analogues. The larger bathochromic shift was consistent with the narrower HOMO-SOMO and HOMO-LUMO gaps in larger [n]CPP(•+) and [n]CPP(2+), respectively. In [n]CPP(•+), the spins and charges were equally and fully delocalized over the p-phenylene rings of the CPPs, as noted by ESR. (1)H NMR revealed that the hydrogen of [n]CPP(2+) shifted to a high magnetic field from the neutral compounds due to the diamagnetic ring current derived from the in-plane aromaticity of [n]CPP(2+). The single resonances observed in all [n]CPP(2+) strongly suggest the complete delocalization of the charges over the CPPs. Furthermore, the contribution of biradical character was clarified for [10]- and [12]CPP by VT-NMR experiment and theoretical calculation.
- Subjects :
- 010405 organic chemistry
Chemistry
Aromaticity
General Chemistry
010402 general chemistry
Polyene
01 natural sciences
Biochemistry
Catalysis
0104 chemical sciences
chemistry.chemical_compound
Delocalized electron
Crystallography
Colloid and Surface Chemistry
Radical ion
Bathochromic shift
Proton NMR
Diamagnetism
Organic chemistry
Absorption (chemistry)
Subjects
Details
- ISSN :
- 15205126 and 00027863
- Volume :
- 138
- Database :
- OpenAIRE
- Journal :
- Journal of the American Chemical Society
- Accession number :
- edsair.doi.dedup.....4af6d6f40b5de180fad52a728bf13351
- Full Text :
- https://doi.org/10.1021/jacs.5b10855