Back to Search
Start Over
Informative array testing with multiplex assays
- Source :
- Statistics in Medicine. 40:3021-3034
- Publication Year :
- 2021
- Publisher :
- Wiley, 2021.
-
Abstract
- High-volume testing of clinical specimens for sexually transmitted diseases is performed frequently by a process known as group testing. This algorithmic process involves testing portions of specimens from separate individuals together as one unit (or "group") to detect diseases. Retesting is performed on groups that test positively in order to differentiate between positive and negative individual specimens. The overall goal is to use the least number of tests possible across all individuals without sacrificing diagnostic accuracy. One of the most efficient group testing algorithms is array testing. In its simplest form, specimens are arranged into a grid-like structure so that row and column groups can be formed. Positive-testing rows/columns indicate which specimens to retest. With the growing use of multiplex assays, the increasing number of diseases tested by these assays, and the availability of subject-specific risk information, opportunities exist to make this testing process even more efficient. We propose specific specimen arrangements within an array that can reduce the number of retests needed when compared with other array testing algorithms. We examine how to calculate operating characteristics, including the expected number of tests and the SD for the number of tests, and then subsequently find a best arrangement. Our methods are illustrated for chlamydia and gonorrhea detection with the Aptima Combo 2 Assay. We also provide R functions to make our research accessible to laboratories.
- Subjects :
- Statistics and Probability
Sexually transmitted disease
Epidemiology
Computer science
Sexually Transmitted Diseases
Chlamydia trachomatis
Diagnostic accuracy
Sensitivity and Specificity
01 natural sciences
Column (database)
Gonorrhea
010104 statistics & probability
03 medical and health sciences
0302 clinical medicine
Humans
Multiplex
030212 general & internal medicine
0101 mathematics
business.industry
Pattern recognition
Chlamydia Infections
Group testing
Artificial intelligence
business
Row
Algorithms
Subjects
Details
- ISSN :
- 10970258 and 02776715
- Volume :
- 40
- Database :
- OpenAIRE
- Journal :
- Statistics in Medicine
- Accession number :
- edsair.doi.dedup.....4aec65b255cb4ac263f4735950a982f0
- Full Text :
- https://doi.org/10.1002/sim.8954