Back to Search Start Over

A quasi-optimal variant of the Hybrid High-Order method for elliptic PDEs with $H^{-1}$ loads

Authors :
Ern, Alexandre
Zanotti, Pietro
Simulation for the Environment: Reliable and Efficient Numerical Algorithms (SERENA)
Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS)
École des Ponts ParisTech (ENPC)
Fakultät für Mathematik [Dortmund]
Source :
IMA Journal of Numerical Analysis, IMA Journal of Numerical Analysis, 2020, 40 (4), ⟨10.1093/imanum/drz057⟩, IMA Journal of Numerical Analysis, Oxford University Press (OUP), 2020, 40 (4), ⟨10.1093/imanum/drz057⟩
Publication Year :
2019
Publisher :
arXiv, 2019.

Abstract

International audience; Hybrid High-Order methods for elliptic diffusion problems have been originally formulated for loads in the Lebesgue space $L^2(\Omega)$. In this paper we devise and analyze a variant thereof, which is defined for any load in the dual Sobolev space $H^{-1}(\Omega)$. The main feature of the present variant is that its $H^1$-norm error can be bounded only in terms of the $H^1$-norm best error in a space of broken polynomials. We establish this estimate with the help of recent results on the quasi-optimality of nonconforming methods. We prove also an improved error bound in the $L^2$-norm by duality. Compared to previous works on quasi-optimal nonconforming methods, the main novelties are that Hybrid High-Order methods handle pairs of unknowns, and not a single function, and, more crucially, that these methods employ a reconstruction that is one polynomial degree higher than the discrete unknowns. The proposed modification affects only the formulation of the discrete right-hand side. This is obtained by properly mapping discrete test functions into $H^1_0(\Omega)$.

Details

ISSN :
02724979 and 14643642
Database :
OpenAIRE
Journal :
IMA Journal of Numerical Analysis, IMA Journal of Numerical Analysis, 2020, 40 (4), ⟨10.1093/imanum/drz057⟩, IMA Journal of Numerical Analysis, Oxford University Press (OUP), 2020, 40 (4), ⟨10.1093/imanum/drz057⟩
Accession number :
edsair.doi.dedup.....4abc2af6fae922d6e671cc84d46b849a
Full Text :
https://doi.org/10.48550/arxiv.1904.13125