Back to Search Start Over

Bone material strength index as measured by in vivo impact microindentation is normal in subjects with high-energy trauma fractures

Authors :
M. Schoeb
E. M. Winter
F. Malgo
I. B. Schipper
R. J. P. van der Wal
S. E. Papapoulos
N. M. Appelman-Dijkstra
Source :
Osteoporosis International, 33, 1511-1519. SPRINGER LONDON LTD
Publication Year :
2022

Abstract

Bone material properties were assessed using impact microindentation in patients with high-energy trauma fractures. Compared to patients with low-energy trauma fractures, bone material strength index was significantly higher in patients with high-energy trauma fractures, and did not differ between patients with osteopenia and those with osteoporosis within each trauma group. Introduction Impact microindentation (IMI) is a technique to assess tissue-level properties of bone at the tibia. Bone material strength index (BMSi), measured by IMI, is decreased in patients with low-energy trauma fractures, independently of areal bone mineral density (aBMD), but there is no information about BMSi in patients with high-energy trauma fractures. In the present study, we evaluated tissue-level properties of bone with IMI in patients with high-energy trauma fractures. Methods BMSi was measured 3.0 months (IQR 2.0-5.8) after the fracture in 40 patients with high-energy trauma and 40 age- and gender-matched controls with low-energy trauma fractures using the OsteoProbe (R) device. Results Mean age of high- and low-energy trauma patients was 57.7 +/- 9.1 and 57.2 +/- 7.7 years, respectively (p = 0.78). Fracture types were comparable in high- vs low-energy trauma patients. Lumbar spine (LS)-aBMD, but not femoral neck (FN)-aBMD, was higher in high- than in low-energy trauma patients (LS 0.96 +/- 0.13 vs 0.89 +/- 0.13 g/cm(2), p = 0.02; FN 0.75 +/- 0.09 vs 0.72 +/- 0.09 g/cm(2), p = 0.09). BMSi was significantly higher in high- than in low-energy trauma patients (84.4 +/- 5.0 vs 78.0 +/- 4.6, p = 0.001), also after adjusting for aBMD (p = 0.003). In addition, BMSi did not differ between patients with osteopenia and those with osteoporosis within each trauma group. Conclusion Our data demonstrate that BMSi and LS-aBMD, but not FN-aBMD, are significantly higher in high-energy trauma patients compared to matched controls with similar fractures from low-energy trauma. Further studies of non-osteoporotic patients with high-energy trauma fracture with measurements of BMSi are warranted to determine whether IMI might help in identifying those with reduced bone strength.

Details

Language :
English
Database :
OpenAIRE
Journal :
Osteoporosis International, 33, 1511-1519. SPRINGER LONDON LTD
Accession number :
edsair.doi.dedup.....4aa876ca09a37a695e88b5059351923e