Back to Search Start Over

Patient-derived monoclonal antibody neutralizes SARS-CoV-2 Omicron variants and confers full protection in monkeys

Authors :
Craig Fenwick
Priscilla Turelli
Dongchun Ni
Laurent Perez
Kelvin Lau
Cécile Herate
Romain Marlin
Erica Lana
Céline Pellaton
Charlène Raclot
Line Esteves-Leuenberger
Jérémy Campos
Alex Farina
Flurin Fiscalini
Nathalie Dereuddre-Bosquet
Francis Relouzat
Rana Abdelnabi
Caroline S. Foo
Johan Neyts
Pieter Leyssen
Yves Lévy
Florence Pojer
Henning Stahlberg
Roger LeGrand
Didier Trono
Giuseppe Pantaleo
Source :
Nature Microbiology
Publication Year :
2022
Publisher :
NATURE PORTFOLIO, 2022.

Abstract

The SARS-CoV-2 Omicron variant has very high levels of transmission, is resistant to neutralization by authorized therapeutic human monoclonal antibodies (mAb) and is less sensitive to vaccine-mediated immunity. To provide additional therapies against Omicron, we isolated a mAb named P2G3 from a previously infected vaccinated donor and showed that it has picomolar-range neutralizing activity against Omicron BA.1, BA.1.1, BA.2 and all other variants tested. We solved the structure of P2G3 Fab in complex with the Omicron spike using cryo-electron microscopy at 3.04 angstrom resolution to identify the P2G3 epitope as a Class 3 mAb that is different from mAb-binding spike epitopes reported previously. Using a SARS-CoV-2 Omicron monkey challenge model, we show that P2G3 alone, or in combination with P5C3 (a broadly active Class 1 mAb previously identified), confers complete prophylactic or therapeutic protection. Although we could select for SARS-CoV-2 mutants escaping neutralization by P2G3 or by P5C3 in vitro, they had low infectivity and 'escape' mutations are extremely rare in public sequence databases. We conclude that this combination of mAbs has potential as an anti-Omicron drug. A potent mAb shows promise in monkeys either alone or in a combination therapy for either prophylaxis or treatment of infection with SARS-CoV-2 Omicron BA.1, BA.1.1 and BA.2.

Details

Language :
English
Database :
OpenAIRE
Journal :
Nature Microbiology
Accession number :
edsair.doi.dedup.....4aa2d8d308478607f5a9bccdf91a9cc8