Back to Search Start Over

Intracellular Sorting Signals for Sequential Trafficking of Human Cytomegalovirus UL37 Proteins to the Endoplasmic Reticulum and Mitochondria

Authors :
Chad D. Williamson
Anamaris M. Colberg-Poley
Source :
Journal of Virology. 84:6400-6409
Publication Year :
2010
Publisher :
American Society for Microbiology, 2010.

Abstract

Human cytomegalovirus UL37 antiapoptotic proteins, including the predominant UL37 exon 1 protein (pUL37x1), traffic sequentially from the endoplasmic reticulum (ER) through the mitochondrion-associated membrane compartment to the mitochondrial outer membrane (OMM), where they inactivate the proapoptotic activity of Bax. We found that widespread mitochondrial distribution occurs within 1 h of pUL37x1 synthesis. The pUL37x1 mitochondrial targeting signal (MTS) spans its first antiapoptotic domain (residues 5 to 34) and consists of a weak hydrophobicity leader (MTSα) and proximal downstream residues (MTSβ). This MTS arrangement of a hydrophobic leader and downstream proximal basic residues is similar to that of the translocase of the OMM 20, Tom20. We examined whether the UL37 MTS functions analogously to Tom20 leader. Surprisingly, lowered hydropathy of the UL37x1 MTSα, predicted to block ER translocation, still allowed dual targeting of mutant to the ER and OMM. However, increased hydropathy of the MTS leader caused exclusion of the UL37x1 high-hydropathy mutant from mitochondrial import. Conversely, UL37 MTSα replacement with the Tom20 leader did not retarget pUL37x1 exclusively to the OMM; rather, the UL37x1-Tom20 chimera retained dual trafficking. Moreover, replacement of the UL37 MTSβ basic residues did not reduce OMM import. Ablation of the MTSα posttranslational modification site or of the downstream MTS proline-rich domain (PRD) increased mitochondrial import. Our results suggest that pUL37x1 sequential ER to mitochondrial trafficking requires a weakly hydrophobic leader and is regulated by MTSβ sequences. Thus, HCMV pUL37x1 uses a mitochondrial importation pathway that is genetically distinguishable from that of known OMM proteins.

Details

ISSN :
10985514 and 0022538X
Volume :
84
Database :
OpenAIRE
Journal :
Journal of Virology
Accession number :
edsair.doi.dedup.....4a9ff647411dba75f9225bbaae7c509d
Full Text :
https://doi.org/10.1128/jvi.00556-10