Back to Search Start Over

Validation and update of a lymph node metastasis prediction model for breast cancer

Authors :
Pieter Ott
Susanne H. Estourgie
Arkajyoti Bhattacharya
Huan Cheng Zeng
Hendrik Koffijberg
Jeroen Veltman
Si-Qi Qiu
Caroline A H Klazen
Sabine Siesling
Monique D. Dorrius
Marissa C. van Maaren
Merel Aarnink
W. Kelder
Gooitzen M. van Dam
Guo-Jun Zhang
Jan H. Korte
Health Technology & Services Research
Guided Treatment in Optimal Selected Cancer Patients (GUTS)
Microbes in Health and Disease (MHD)
​Basic and Translational Research and Imaging Methodology Development in Groningen (BRIDGE)
Source :
European journal of surgical oncology, 44(5), 700-707. Elsevier, EJSO, 44(5), 700-707. ELSEVIER SCI LTD
Publication Year :
2018
Publisher :
Elsevier BV, 2018.

Abstract

Purpose: This study aimed to validate and update a model for predicting the risk of axillary lymph node (ALN) metastasis for assisting clinical decision-making.Methods: We included breast cancer patients diagnosed at six Dutch hospitals between 2011 and 2015 to validate the original model which includes six variables: clinical tumor size, tumor grade, estrogen receptor status, lymph node longest axis, cortical thickness and hilum status as detected by ultrasonography. Subsequently, we updated the original model using generalized linear model (GLM) tree analysis and by adjusting its intercept and slope. The area under the receiver operator characteristic curve (AUC) and calibration curve were used to assess the original and updated models. Clinical usefulness of the model was evaluated by false-negative rates (FNRs) at different cut-off points for the predictive probability.Results: Data from 1416 patients were analyzed. The AUC for the original model was 0.774. Patients were classified into four risk groups by GLM analysis, for which four updated models were created. The AUC for the updated models was 0.812. The calibration curves showed that the updated model predictions were better in agreement with actual observations than the original model predictions. FNRs of the updated models were lower than the preset 10% at all cut-off points when the predictive probability was less than 12.0%. ER Conclusions: The original model showed good performance in the Dutch validation population. The updated models resulted in more accurate ALN metastasis prediction and could be useful preoperative tools in selecting low-risk patients for omission of axillary surgery. (C) 2018 Elsevier Ltd, BASO - The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.

Details

ISSN :
07487983
Volume :
44
Database :
OpenAIRE
Journal :
European Journal of Surgical Oncology
Accession number :
edsair.doi.dedup.....4a793ad349067e9dbe5b1748cb0e48fe
Full Text :
https://doi.org/10.1016/j.ejso.2017.12.008