Back to Search Start Over

A unified view on beamformers for M/EEG source reconstruction

Authors :
Britta U. Westner
Sarang S. Dalal
Alexandre Gramfort
Vladimir Litvak
John C. Mosher
Robert Oostenveld
Jan-Mathijs Schoffelen
Donders Institute for Brain, Cognition and Behaviour
Radboud university [Nijmegen]
Aarhus University [Aarhus]
Modelling brain structure, function and variability based on high-field MRI data (PARIETAL)
Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Service NEUROSPIN (NEUROSPIN)
Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
NMR Research Unit [London]
Institute of Neurology [London]
University College of London [London] (UCL)-University College of London [London] (UCL)
The University of Texas Health Science Center at Houston (UTHealth)
Karolinska Institutet [Stockholm]
Radboud University [Nijmegen]
Service NEUROSPIN (NEUROSPIN)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Source :
NeuroImage, NeuroImage, Elsevier, 2022, 246, pp.118789. ⟨10.1016/j.neuroimage.2021.118789⟩, NeuroImage, 246, NeuroImage, Vol 246, Iss, Pp 118789-(2022), Westner, B U, Dalal, S S, Gramfort, A, Litvak, V, Mosher, J C, Oostenveld, R & Schoffelen, J-M 2022, ' A unified view on beamformers for M/EEG source reconstruction ', NeuroImage, vol. 246, 118789 . https://doi.org/10.1016/j.neuroimage.2021.118789, NeuroImage, 2022, 246, pp.118789. ⟨10.1016/j.neuroimage.2021.118789⟩
Publication Year :
2022
Publisher :
Elsevier BV, 2022.

Abstract

Contains fulltext : 246921.pdf (Publisher’s version ) (Open Access) Beamforming is a popular method for functional source reconstruction using magnetoencephalography (MEG) and electroencephalography (EEG) data. Beamformers, which were first proposed for MEG more than two decades ago, have since been applied in hundreds of studies, demonstrating that they are a versatile and robust tool for neuroscience. However, certain characteristics of beamformers remain somewhat elusive and there currently does not exist a unified documentation of the mathematical underpinnings and computational subtleties of beamformers as implemented in the most widely used academic open source software packages for MEG analysis (Brainstorm, FieldTrip, MNE, and SPM). Here, we provide such documentation that aims at providing the mathematical background of beamforming and unifying the terminology. Beamformer implementations are compared across toolboxes and pitfalls of beamforming analyses are discussed. Specifically, we provide details on handling rank deficient covariance matrices, prewhitening, the rank reduction of forward fields, and on the combination of heterogeneous sensor types, such as magnetometers and gradiometers. The overall aim of this paper is to contribute to contemporary efforts towards higher levels of computational transparency in functional neuroimaging. 11 p.

Details

ISSN :
10538119 and 10959572
Volume :
246
Database :
OpenAIRE
Journal :
NeuroImage
Accession number :
edsair.doi.dedup.....4a731234399f05fa43c41c9ae84e1eec