Back to Search
Start Over
Symmetry breaking in the periodic Thomas–Fermi–Dirac–von Weizsäcker model
- Source :
- Annales Henri Poincaré, Annales Henri Poincaré, 2018, 19 (10), pp.3129--3177. ⟨10.1007/s00023-018-0711-5⟩, Annales Henri Poincaré, Springer Verlag, 2018, ⟨10.1007/s00023-018-0711-5⟩
- Publication Year :
- 2018
- Publisher :
- HAL CCSD, 2018.
-
Abstract
- International audience; We consider the Thomas--Fermi--Dirac--von~Weizsäcker model for a system composed of infinitely many nuclei placed on a periodic lattice and electrons with a periodic density. We prove that if the Dirac constant is small enough, the electrons have the same periodicity as the nuclei. On the other hand if the Dirac constant is large enough, the 2-periodic electronic minimizer is not 1-periodic, hence symmetry breaking occurs. We analyze in detail the behavior of the electrons when the Dirac constant tends to infinity and show that the electrons all concentrate around exactly one of the 8 nuclei of the unit cell of size 2, which is the explanation of the breaking of symmetry. Zooming at this point, the electronic density solves an effective nonlinear Schr\"odinger equation in the whole space with nonlinearity $u^{7/3}-u^{4/3}$. Our results rely on the analysis of this nonlinear equation, in particular on the uniqueness and non-degeneracy of positive solutions.
- Subjects :
- Physics
Nuclear and High Energy Physics
010102 general mathematics
Dirac (software)
Statistical and Nonlinear Physics
Electron
01 natural sciences
Symmetry (physics)
symbols.namesake
[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]
0103 physical sciences
symbols
Fermi–Dirac statistics
Uniqueness
Symmetry breaking
0101 mathematics
010306 general physics
Constant (mathematics)
Nonlinear Schrödinger equation
Mathematical Physics
Mathematical physics
Subjects
Details
- Language :
- English
- ISSN :
- 14240637 and 14240661
- Database :
- OpenAIRE
- Journal :
- Annales Henri Poincaré, Annales Henri Poincaré, 2018, 19 (10), pp.3129--3177. ⟨10.1007/s00023-018-0711-5⟩, Annales Henri Poincaré, Springer Verlag, 2018, ⟨10.1007/s00023-018-0711-5⟩
- Accession number :
- edsair.doi.dedup.....4a3c7a215e418c3554c113e827572259
- Full Text :
- https://doi.org/10.1007/s00023-018-0711-5⟩