Back to Search Start Over

Symmetry breaking in the periodic Thomas–Fermi–Dirac–von Weizsäcker model

Authors :
Julien Ricaud
Analyse, Géométrie et Modélisation (AGM - UMR 8088)
Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
CEntre de REcherches en MAthématiques de la DEcision (CEREMADE)
Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
European Project: 258023,EC:FP7:ERC,ERC-2010-StG_20091028,MNIQS(2010)
Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Source :
Annales Henri Poincaré, Annales Henri Poincaré, 2018, 19 (10), pp.3129--3177. ⟨10.1007/s00023-018-0711-5⟩, Annales Henri Poincaré, Springer Verlag, 2018, ⟨10.1007/s00023-018-0711-5⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

International audience; We consider the Thomas--Fermi--Dirac--von~Weizsäcker model for a system composed of infinitely many nuclei placed on a periodic lattice and electrons with a periodic density. We prove that if the Dirac constant is small enough, the electrons have the same periodicity as the nuclei. On the other hand if the Dirac constant is large enough, the 2-periodic electronic minimizer is not 1-periodic, hence symmetry breaking occurs. We analyze in detail the behavior of the electrons when the Dirac constant tends to infinity and show that the electrons all concentrate around exactly one of the 8 nuclei of the unit cell of size 2, which is the explanation of the breaking of symmetry. Zooming at this point, the electronic density solves an effective nonlinear Schr\"odinger equation in the whole space with nonlinearity $u^{7/3}-u^{4/3}$. Our results rely on the analysis of this nonlinear equation, in particular on the uniqueness and non-degeneracy of positive solutions.

Details

Language :
English
ISSN :
14240637 and 14240661
Database :
OpenAIRE
Journal :
Annales Henri Poincaré, Annales Henri Poincaré, 2018, 19 (10), pp.3129--3177. ⟨10.1007/s00023-018-0711-5⟩, Annales Henri Poincaré, Springer Verlag, 2018, ⟨10.1007/s00023-018-0711-5⟩
Accession number :
edsair.doi.dedup.....4a3c7a215e418c3554c113e827572259
Full Text :
https://doi.org/10.1007/s00023-018-0711-5⟩