Back to Search Start Over

Systematic Evaluation of Chiral Fungicide Imazalil and Its Major Metabolite R14821 (Imazalil-M): Stability of Enantiomers, Enantioselective Bioactivity, Aquatic Toxicity, and Dissipation in Greenhouse Vegetables and Soil

Authors :
Xinglu Pan
Jun Xu
Zenglong Chen
Yan Tao
Runan Li
Xingang Liu
Fengshou Dong
Duoduo Jiang
Xiaohu Wu
Yongquan Zheng
Source :
Journal of agricultural and food chemistry. 67(41)
Publication Year :
2019

Abstract

Chiral pesticides are often produced and applied without distinguishing the difference of enantiomers, which sometimes leads to overuse and inaccurate risk assessment. Imazalil is a widely used chiral fungicide; its parent and major metabolite R14821 (imazalil-M) are usually detected in environmental and plant samples. The enantioselective bioactivity of imazalil enantiomers to seven typical pathogens (e.g., Fulvia fulva) was explored. S-(+)-Imazalil showed 3.00-6.59 times higher bioactivity than its antipode for selected pathogens. Molecular docking partly explained the mechanism of enantioselectivity in bioactivity. S-(+)-Imazalil had a stronger hydrophobic interaction and lower energy conformation with binding sites than R-(-)-imazalil. The acute toxicity of S-(+)-imazalil was 1.23-fold and 2.25-fold more than R-(-)-imazalil to P. subcapitata and D. magna, respectively. And, S-(+)-imazalil-M had 2.21-fold and 1.70-fold higher toxicity than R-(-)-imazalil-M to P. subcapitata and D. magna, respectively. However, R-(-)-imazalil was 1.21 times more toxic than S-(+)-imazalil to D. rerio. The enantioselective dissipation of imazalil and imazalil-M was explored under greenhouse conditions. High-effective S-(+)-imazalil preferentially enriched in leaf and fruit of tomato and cucumber, and no enantioselective degradation was found in soil. Imazalil-M enantiomers formed in cucumber, leaf of cucumber, and tomato, and the EF values fluctuated between 0.332 and 0.499. The results could provide information for more accurate assessment of imazalil; they implicated that using S-(+)-imazalil could reduce pesticide input and the risk to D. rerio.

Details

ISSN :
15205118
Volume :
67
Issue :
41
Database :
OpenAIRE
Journal :
Journal of agricultural and food chemistry
Accession number :
edsair.doi.dedup.....4a137d30133a5effabd78ec283e2681f