Back to Search Start Over

Abnormal meiosis in fertile and sterile triploid cyprinid fish

Authors :
Shurun Zhu
Conghui Yang
Rurong Zhao
Chenchen Tang
Chang Wu
Luojing Zhou
Wangchao He
Yi Zhou
Qi Li
Chun Zhang
Min Tao
La Zhu
Yuandong Sun
Yu Sun
Hui Zhang
Shaojun Liu
Source :
Science China Life Sciences. 64:1917-1928
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

Meiosis is the key process for producing mature gametes. A natural fertile triploid Carassius auratus population (3nDTCC) and an artificially derived sterile triploid crucian carp (3nCC) have been previously observed, providing suitable model organisms for investigating meiosis characteristics in triploid fish. In the present study, the microstructures and ultrastructures of spermatogenesis were studied in these fishes. TdT-mediated dUTP nick end labeling detection was performed to investigate the apoptosis of spermatocytes. Fluorescence in situ hybridization was employed to trace chromatin pairing. In addition, the mRNA expressions of cell cycle-related genes (i.e., cell division control 2 and cell cycle protein B) were determined by quantitative realtime polymerase chain reaction to illustrate the molecular mechanism of abnormal meiosis in the 3nCC. The results showed that the 3nCC undergoes an irregular prophase I, with the chromosomes distributed in a unipolar radial manner and exhibiting partial pairing, hindered metaphase I, and degenerated cells in the subsequent stages. Meanwhile, the 3nDTCC presented a relatively regular meiotic prophase I with complete conjugate chromosome pairs and chromosomes distributed along the karyotheca, which were presented as a ring structure by slicing. Only the spreads with 130-150 irregular chromosomes can be easily detected in the 3nDTCC, suggesting that it may undergo an abnormal metaphase I. This study provides new insights into the meiosis of fertile and sterile triploid cyprinid fish.

Details

ISSN :
18691889 and 16747305
Volume :
64
Database :
OpenAIRE
Journal :
Science China Life Sciences
Accession number :
edsair.doi.dedup.....49f017532f089fbb2da15c39f850cb37