Back to Search
Start Over
Formation of equiaxed grains in selective laser melted pure titanium during annealing
- Source :
- Journal of Materials Research and Technology, Vol 11, Iss, Pp 301-311 (2021)
- Publication Year :
- 2021
- Publisher :
- Elsevier, 2021.
-
Abstract
- Commercially pure titanium (CP-Ti) has seen major applications in biomedical equipment. The use of selective laser melting (SLM) has become more common concerning the fabrication of CP-Ti components with a complicated shape in biomedical implants, where high strength and ductility are required. However, SLM manufactured CP-Ti often exhibits high strength and low ductility, as well as mechanical anisotropy because SLM process typically results in the formation of long columnar grains comprising of fine acicular α′ martensite. Heat treatment must be preceded to transform the acicular α′ to equiaxed α grain. This study demonstrated that annealing at 650 °C of SLM CP-Ti can create an equiaxed structure, resulting in a weakened texture. The formation of equiaxed grains occurred at two types of microstructural features, acicular α′ and irregular massive (α′m) martensite, which exhibited different sizes, morphologies, and contained different types of substructures under SLM as-fabricated condition. The formation mechanism of equiaxed grains in the α′ region is dominated by the coalescence of acicular α′ of the same variant and the dissolution of α′ into the matrix, whereas the formation mechanism in the α′m region is primarily dominated by the growth of the preexisting subgrains. A small number of equiaxed grains with new orientations were formed in the α′m region. The majority of equiaxed grains were formed in the acicular α′ region and inherited the grain orientations of the preexisting α′ or matrix. Therefore, a similar but weakened texture was inherited from the microstructure of the SLM CP-Ti after annealing.
- Subjects :
- Equiaxed crystals
lcsh:TN1-997
Materials science
Annealing (metallurgy)
02 engineering and technology
Equiaxed grain
01 natural sciences
Biomaterials
0103 physical sciences
Texture (crystalline)
Texture
Composite material
Selective laser melting
Ductility
lcsh:Mining engineering. Metallurgy
010302 applied physics
Acicular
Metals and Alloys
Pure titanium
021001 nanoscience & nanotechnology
Microstructure
Surfaces, Coatings and Films
Post-heat treatment
Martensite
Ceramics and Composites
0210 nano-technology
Subjects
Details
- Language :
- English
- ISSN :
- 22387854
- Volume :
- 11
- Database :
- OpenAIRE
- Journal :
- Journal of Materials Research and Technology
- Accession number :
- edsair.doi.dedup.....49e8ef82acc39db571df988d286cc427