Back to Search
Start Over
Asymptotic behavior for a nonlocal model of neural fields
- Source :
- Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
- Publication Year :
- 2015
-
Abstract
- In this paper we consider the non local evolution problem $$\begin{aligned} {\left\{ \begin{array}{ll} \partial _t u =- u + K(f\circ u ) \ \ in \ \ \Omega ,\\ u = 0 \ \ in \ \ \mathbb {R}^N\backslash \Omega , \end{array}\right. } \end{aligned}$$ where \(\Omega \) is a smooth bounded domain in \(\mathbb {R}^N\), \(f: \mathbb {R}\rightarrow \mathbb {R}\) and K is an integral operator with a symmetric kernel. We prove existence and some regularity properties of the global attractor. We also characterize the global attractor, using the properties of a Lyapunov functional for this model.
Details
- Database :
- OpenAIRE
- Journal :
- Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
- Accession number :
- edsair.doi.dedup.....49cb455454139c0aefd039911ad1aa85