Back to Search Start Over

Exploring the Factors which Result in Cytochrome P450 Catalyzed Desaturation Versus Hydroxylation

Authors :
Tom Coleman
Daniel Z. Doherty
Ting Zhang
Matthew N. Podgorski
Ruihong Qiao
Joel H. Z. Lee
John B. Bruning
James J. De Voss
Weihong Zhou
Stephen G. Bell
Source :
Chemistry – An Asian Journal. 17
Publication Year :
2022
Publisher :
Wiley, 2022.

Abstract

The cytochrome P450 family of monooxygenase enzymes have essential biological roles involving the selective oxidation of carbon-hydrogen bonds. They can also catalyze other important metabolic reactions including desaturation to form alkenes. Currently the factors that control the partition between P450 hydroxylation and desaturation pathways are poorly defined. The CYP199A4 enzyme from the bacterium Rhodopseudomonas palustris HaA2 catalyzes the oxidation of 4-ethyl- and 4-isopropyl- benzoic acids with hydroxylation and desaturation occurring in significant quantities. Here we demonstrate that 4-cyclopropylbenzoic acid is regioselectively hydroxylated by CYP199A4 at the benzylic carbon. In contrast, the oxidation of 4-n-propylbenzoic acid by CYP199A4 results in three major metabolites: an alkene from desaturation and two hydroxylation products at the benzylic (Cα) and Cβ carbons in similar quantities. Extending the length of the alkyl substituent resulted in 4-n-butylbenzoic acid being oxidized at the benzylic position (45%) and desaturated (55%). In contrast, 4-isobutylbenzoic generated very little alkene (5%) but was hydroxylated at the benzylic position (54%) and at the tertiary Cβ position (41%). The oxidation of 4-n-propylbenzoic acid by the F298 V mutant of CYP199A4 occurred with no hydroxylation at Cβ and a significant increase in metabolites arising from desaturation (73%). The X-ray crystal structures of CYP199A4 with each substrate revealed that they bind in the active site with the alkyl substituent positioned over the heme. However, the longer alkylbenzoic acids were bound in a different conformation as was 4-n-propylbenzoic acid in the F298 V mutant. Overall, the changes in metabolite distribution could be ascribed to bond strength differences and the position of the alkyl group relative to the heme.

Details

ISSN :
1861471X and 18614728
Volume :
17
Database :
OpenAIRE
Journal :
Chemistry – An Asian Journal
Accession number :
edsair.doi.dedup.....499e81a017bc75fb7f7a5b170e2d72a0
Full Text :
https://doi.org/10.1002/asia.202200986