Back to Search Start Over

Inhibition of microRNA122 decreases SREBP1 expression by modulating suppressor of cytokine signaling 3 expression

Authors :
Motoko Ohno
Takeshi Yoshikawa
Kazuhiko Koike
Haruhiko Yoshida
Takahiro Kishikawa
Chikako Shibata
Motoyuki Otsuka
Akemi Takata
Source :
Biochemical and Biophysical Research Communications. 438:230-235
Publication Year :
2013
Publisher :
Elsevier BV, 2013.

Abstract

While inhibition of microRNA122 (miR122) function in vivo results in reduced serum cholesterol and fatty acid levels, the molecular mechanisms underlying the link between miR122 function and lipid metabolism remains unclear. Because the expression of SREBP1, a central transcription factor involved in lipid metabolism, is known to be increased by suppressor of cytokine signaling 3 (SOCS3) expression, and because we previously found that SOCS3 expression is regulated by miR122, in this study, we examined the correlation between miR122 status and the expression levels of SOCS3 and SREBP1. SREBP1 expression decreased when SOCS3 expression was reduced by miR122 silencing in vitro. Conversely, SREBP1 expression in miR122-silenced cells was restored by enforced expression of SOCS3. Such correlations were observed in human liver tissues with different miR122 expression levels. These signaling links may explain one of the molecular mechanisms linking inhibition of miR122 function or decreased expression of miR122 to decreased fatty acid and cholesterol levels, in the inhibition of miR122 function, or in pathological status in chronic liver diseases.

Details

ISSN :
0006291X
Volume :
438
Database :
OpenAIRE
Journal :
Biochemical and Biophysical Research Communications
Accession number :
edsair.doi.dedup.....498b14297ba177c0f86974ce123e514f
Full Text :
https://doi.org/10.1016/j.bbrc.2013.07.064