Back to Search
Start Over
On the affineness of Deligne–Lusztig varieties
- Source :
- Journal of Algebra. 320:1207-1219
- Publication Year :
- 2008
- Publisher :
- Elsevier BV, 2008.
-
Abstract
- We prove that the Deligne–Lusztig variety associated to minimal length elements in any δ -conjugacy class of the Weyl group is affine, which was conjectured by Orlik and Rapoport in [S. Orlik, M. Rapoport, Deligne–Lusztig varieties and period domains over finite fields, arXiv: 0705.1646 ].
- Subjects :
- Pure mathematics
Weyl group
Algebra and Number Theory
Mathematics::Commutative Algebra
Minimal length element
Mathematics::Algebraic Topology
Deligne–Lusztig variety
Algebra
symbols.namesake
Mathematics::Algebraic Geometry
Conjugacy class
Finite field
symbols
Affine transformation
Variety (universal algebra)
Mathematics::Representation Theory
Mathematics
Subjects
Details
- ISSN :
- 00218693
- Volume :
- 320
- Database :
- OpenAIRE
- Journal :
- Journal of Algebra
- Accession number :
- edsair.doi.dedup.....496d3d99cc0d5121413c8801b90475ba
- Full Text :
- https://doi.org/10.1016/j.jalgebra.2007.12.028