Back to Search Start Over

Homogeneous almost quaternion-Hermitian manifolds

Authors :
Andrei Moroianu
Mihaela Pilca
Uwe Semmelmann
Laboratoire de Mathématiques de Versailles (LMV)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Universität Regensburg (UR)
'Simion Stoilow' Institute of Mathematics (IMAR)
Romanian Academy of Sciences
Institut für Geometrie und Topologie [Stuttgart] (IGT)
Universität Stuttgart [Stuttgart]
Source :
Mathematische Annalen, Mathematische Annalen, 2013, 357 (4), pp.1205-1216. ⟨10.1007/s00208-013-0934-1⟩
Publication Year :
2013
Publisher :
HAL CCSD, 2013.

Abstract

An almost quaternion-Hermitian structure on a Riemannian manifold $(M^{4n},g)$ is a reduction of the structure group of $M$ to $\mathrm{Sp}(n)\mathrm{Sp}(1)\subset \mathrm{SO}(4n)$. In this paper we show that a compact simply connected homogeneous almost quaternion-Hermitian manifold of non-vanishing Euler characteristic is either a Wolf space, or $\mathbb{S}^2\times \mathbb{S}^2$, or the complex quadric $\mathrm{SO}(7)/\mathrm{U}(3)$.<br />published version, references updated

Details

Language :
English
Database :
OpenAIRE
Journal :
Mathematische Annalen, Mathematische Annalen, 2013, 357 (4), pp.1205-1216. ⟨10.1007/s00208-013-0934-1⟩
Accession number :
edsair.doi.dedup.....49216fca261bc00fb0478f69a6892175
Full Text :
https://doi.org/10.1007/s00208-013-0934-1⟩