Back to Search
Start Over
Homogeneous almost quaternion-Hermitian manifolds
- Source :
- Mathematische Annalen, Mathematische Annalen, 2013, 357 (4), pp.1205-1216. ⟨10.1007/s00208-013-0934-1⟩
- Publication Year :
- 2013
- Publisher :
- HAL CCSD, 2013.
-
Abstract
- An almost quaternion-Hermitian structure on a Riemannian manifold $(M^{4n},g)$ is a reduction of the structure group of $M$ to $\mathrm{Sp}(n)\mathrm{Sp}(1)\subset \mathrm{SO}(4n)$. In this paper we show that a compact simply connected homogeneous almost quaternion-Hermitian manifold of non-vanishing Euler characteristic is either a Wolf space, or $\mathbb{S}^2\times \mathbb{S}^2$, or the complex quadric $\mathrm{SO}(7)/\mathrm{U}(3)$.<br />published version, references updated
- Subjects :
- Mathematics - Differential Geometry
Quadric
General Mathematics
Space (mathematics)
01 natural sciences
Combinatorics
symbols.namesake
Euler characteristic
0103 physical sciences
Simply connected space
FOS: Mathematics
Representation Theory (math.RT)
53C30, 53C35, 53C15 (Primary) 17B22 (Secondary)
0101 mathematics
[MATH]Mathematics [math]
Mathematics
Group (mathematics)
010102 general mathematics
Riemannian manifold
Hermitian matrix
Manifold
Differential Geometry (math.DG)
symbols
Mathematics::Differential Geometry
010307 mathematical physics
Mathematics - Representation Theory
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Mathematische Annalen, Mathematische Annalen, 2013, 357 (4), pp.1205-1216. ⟨10.1007/s00208-013-0934-1⟩
- Accession number :
- edsair.doi.dedup.....49216fca261bc00fb0478f69a6892175
- Full Text :
- https://doi.org/10.1007/s00208-013-0934-1⟩