Back to Search Start Over

Enhanced Boron Diffusion in Amorphous Silicon

Authors :
Mark E. Law
Leonard M. Rubin
M. Beebe
N. Burbure
Joe Bennett
Daniel F. Downey
Lance S. Robertson
M. Klimov
Kevin S. Jones
Jeannette M. Jacques
Source :
Web of Science, Scopus-Elsevier
Publication Year :
2004
Publisher :
Springer Science and Business Media LLC, 2004.

Abstract

In prior works, we demonstrated the phenomenon of fluorine-enhanced boron diffusion within self-amorphized silicon. Present studies address the process dependencies of low temperature boron motion within ion implanted materials utilizing a germanium amorphization. Silicon wafers were preamorphized with either 60 keV or 80 keV Ge+ at a dose of 1×1015 atoms/cm2. Subsequent 500 eV, 1×1015 atoms/cm211B+ implants, as well as 6 keV F+ implants with doses ranging from 1×1014 atoms/cm2 to 5×1015 atoms/cm2 were also done. Furnace anneals were conducted at 550°C for 10 minutes under an inert N2 ambient. Secondary Ion Mass Spectroscopy (SIMS) was utilized to characterize the occurrence of boron diffusion within amorphous silicon at room temperature, as well as during the Solid Phase Epitaxial Regrowth (SPER) process. Amorphous layer depths were verified through Cross-Sectional Transmission Electron Microscopy (XTEM) and Variable Angle Spectroscopic Ellipsometry (VASE). Boron motion within as-implanted samples is observed at fluorine concentrations greater than 1×1020 atoms/cm3. The magnitude of the boron motion scales with increasing fluorine dose and concentration. During the initial stages of SPER, boron was observed to diffuse irrespective of the co-implanted fluorine dose. Fluorine enhanced diffusion at room temperature does not appear to follow the same process as the enhanced diffusion observed during the regrowth process.

Details

ISSN :
19464274 and 02729172
Volume :
810
Database :
OpenAIRE
Journal :
MRS Proceedings
Accession number :
edsair.doi.dedup.....48a123d379a97c49596a8b72fbe39416