Back to Search Start Over

A Dynamic Occupancy Model for Interacting Species with Two Spatial Scales

Authors :
Frédéric Barraquand
Nigel G. Yoccoz
Rolf A. Ims
Olivier Gimenez
Eeva M. Soininen
John-André Henden
Eivind Flittie Kleiven
University of Tromsø (UiT)
Institut de Mathématiques de Bordeaux (IMB)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Centre d’Ecologie Fonctionnelle et Evolutive (CEFE)
Université Paul-Valéry - Montpellier 3 (UPVM)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-École pratique des hautes études (EPHE)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Source :
Journal of Agricultural Biological and Environmental Statistics
Publication Year :
2023

Abstract

Occupancy models have been extended to account for either multiple spatial scales or species interactions in a dynamic setting. However, as interacting species (e.g., predators and prey) often operate at different spatial scales, including nested spatial structure might be especially relevant to models of interacting species. Here we bridge these two model frameworks by developing a multi-scale, two-species occupancy model. The model is dynamic, i.e. it estimates initial occupancy, colonization and extinction probabilities—including probabilities conditional to the other species’ presence. With a simulation study, we demonstrate that the model is able to estimate most parameters without marked bias under low, medium and high average occupancy probabilities, as well as low, medium and high detection probabilities, with only a small bias for some parameters in low-detection scenarios. We further evaluate the model’s ability to deal with sparse field data by applying it to a multi-scale camera trapping dataset on a mustelid-rodent predator–prey system. Most parameters are estimated with low uncertainty (i.e. narrow posterior distributions). More broadly, our model framework creates opportunities to explicitly account for the spatial structure found in many spatially nested study designs, and to study interacting species that have contrasting movement ranges with camera traps.Supplementary materials accompanying this paper appear online.

Details

Language :
English
Database :
OpenAIRE
Journal :
Journal of Agricultural Biological and Environmental Statistics
Accession number :
edsair.doi.dedup.....489ac090ed69d7b4c244ba4f9b0064f3