Back to Search
Start Over
Analytic regularity of Stokes flow on polygonal domains in countably weighted Sobolev spaces
- Source :
- Journal of Computational and Applied Mathematics. 190(1-2):487-519
- Publication Year :
- 2006
- Publisher :
- Elsevier BV, 2006.
-
Abstract
- We investigate the analytic regularity of the Stokes problem in a polygonal domain Ω⊂R2 with straight sides and piecewise analytic data. We establish a shift theorem in weighted Sobolev spaces of arbitrary order with explicit control of the order-dependence of the constants. The shift-theorem in the framework of countably weighted Sobolev spaces implies in particular interior analyticity and Gevrey-type analytic regularity near the corners.
- Subjects :
- Applied Mathematics
Mathematical analysis
Mathematics::Analysis of PDEs
010103 numerical & computational mathematics
Stokes flow
Countably normed spaces
01 natural sciences
Shift theorem
Domain (mathematical analysis)
Non-homogeneous order
Sobolev inequality
010101 applied mathematics
Sobolev space
Regularity
Computational Mathematics
Piecewise
Interpolation space
Weighted Sobolev spaces
0101 mathematics
Corner singularity
Mathematics
Sobolev spaces for planar domains
Subjects
Details
- ISSN :
- 03770427
- Volume :
- 190
- Issue :
- 1-2
- Database :
- OpenAIRE
- Journal :
- Journal of Computational and Applied Mathematics
- Accession number :
- edsair.doi.dedup.....48911a0a967c1b43fc3c93926797ccd2
- Full Text :
- https://doi.org/10.1016/j.cam.2005.02.018