Back to Search Start Over

On a nonlinear Schrödinger equation for nucleons in one space dimension

Authors :
Simona Rota Nodari
Christian Klein
Institut de Mathématiques de Bourgogne [Dijon] (IMB)
Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC)
Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB)
French National Research Agency (ANR)ANR-17-CE40-0035ANR-17-CE40-0016isite BFC project NAANoDEuropean Commission778010EITAG project - FEDER de BourgogneRegion Bourgogne-Franche-ComteEUR EIPHIANR-17-EURE-0002 EIPHI
ANR-17-CE40-0035,ANuI,Approches analytiques, numériques et des systèmes intégrables pour les équations aux dérivées partielles dispersives nonlinéaires(2017)
ANR-17-CE40-0016,DYRAQ,Dynamique des systèmes quantiques relativistes(2017)
ANR-17-EURE-0002,EIPHI,Ingénierie et Innovation par les sciences physiques, les savoir-faire technologiques et l'interdisciplinarité(2017)
French National Research Agency (ANR)ANR-17-CE40-0035French National Research Agency (ANR)ANR-17-CE40-0016isite BFC project NAANoD European Commission778010EITAG project - FEDER de Bourgogne Region Bourgogne-Franche-Comte EUR EIPHI ANR-17-EURE-0002 EIPHI
European Project: 778010,IPaDEGAN
Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)
Source :
ESAIM: Mathematical Modelling and Numerical Analysis, ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2021, 55 (2), pp.409-427. ⟨10.1051/m2an/2020086⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

We study a 1D nonlinear Schrödinger equation appearing in the description of a particle inside an atomic nucleus. For various nonlinearities, the ground states are discussed and given in explicit form. Their stability is studied numerically via the time evolution of perturbed ground states. In the time evolution of general localized initial data, they are shown to appear in the long time behaviour of certain cases.

Details

Language :
English
ISSN :
0764583X and 12903841
Database :
OpenAIRE
Journal :
ESAIM: Mathematical Modelling and Numerical Analysis, ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2021, 55 (2), pp.409-427. ⟨10.1051/m2an/2020086⟩
Accession number :
edsair.doi.dedup.....48889549a0d40bcd2a4e93c296a57170
Full Text :
https://doi.org/10.1051/m2an/2020086⟩