Back to Search
Start Over
Non-linear System Identification with Composite Relevance Vector Machines
- Source :
- e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid, instname, BURJC-Digital. Repositorio Institucional de la Universidad Rey Juan Carlos
- Publication Year :
- 2007
- Publisher :
- IEEE, 2007.
-
Abstract
- Nonlinear system identification based on relevance vector machines (RVMs) has been traditionally addressed by stacking the input and/or output regressors and then performing standard RVM regression. This letter introduces a full family of composite kernels in order to integrate the input and output information in the mapping function efficiently and hence generalize the standard approach. An improved trade-off between accuracy and sparsity is obtained in several benchmark problems. Also, the RVM yields confidence intervals for the predictions, and it is less sensitive to free parameter selection. Teoría de la Señal y Comunicaciones
- Subjects :
- Relevance Vector Machines
Telecomunicaciones
Nonlinear system identification
business.industry
RVM
Applied Mathematics
Nonlinear System Identification
Regression analysis
Pattern recognition
Composite kernels
Function (mathematics)
Support vector machine
Nonlinear system
Statistics::Machine Learning
Signal Processing
Benchmark (computing)
3325 Tecnología de las Telecomunicaciones
Relevance (information retrieval)
Artificial intelligence
Electrical and Electronic Engineering
business
Mathematics
Free parameter
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid, instname, BURJC-Digital. Repositorio Institucional de la Universidad Rey Juan Carlos
- Accession number :
- edsair.doi.dedup.....487b4f7e6bd4aac4ce133f003dfa2576