Back to Search Start Over

Non-linear System Identification with Composite Relevance Vector Machines

Authors :
Manel Martínez-Ramón
Jordi Muñoz-Marí
José Luis Rojo-Álvarez
Gustau Camps-Valls
Source :
e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid, instname, BURJC-Digital. Repositorio Institucional de la Universidad Rey Juan Carlos
Publication Year :
2007
Publisher :
IEEE, 2007.

Abstract

Nonlinear system identification based on relevance vector machines (RVMs) has been traditionally addressed by stacking the input and/or output regressors and then performing standard RVM regression. This letter introduces a full family of composite kernels in order to integrate the input and output information in the mapping function efficiently and hence generalize the standard approach. An improved trade-off between accuracy and sparsity is obtained in several benchmark problems. Also, the RVM yields confidence intervals for the predictions, and it is less sensitive to free parameter selection. Teoría de la Señal y Comunicaciones

Details

Language :
English
Database :
OpenAIRE
Journal :
e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid, instname, BURJC-Digital. Repositorio Institucional de la Universidad Rey Juan Carlos
Accession number :
edsair.doi.dedup.....487b4f7e6bd4aac4ce133f003dfa2576