Back to Search Start Over

Rosiglitazone protects INS-1E cells from human islet amyloid polypeptide toxicity

Authors :
Carine Marmentini
Dimitrius Santiago P.S.F. Guimarães
Tanes I. de Lima
Francisco Breno S. Teófilo
Natália S. da Silva
Gabriela M. Soares
Antonio C. Boschero
Mirian A. Kurauti
Source :
European journal of pharmacology. 928
Publication Year :
2022

Abstract

Human islet amyloid polypeptide (hIAPP or amylin) is a hormone co-secreted with insulin by pancreatic β-cells, and is the main component of islet amyloid. Islet amyloid is found in the pancreas of patients with type 2 diabetes and may be involved in β-cell dysfunction and death, observed in this disease. Thus, counteracting islet amyloid toxicity represents a therapeutic approach to preserve β-cell mass and function. In this sense, thiazolidinediones (TZDs), as rosiglitazone, have shown protective effects against other harmful insults to β-cells. For this reason, we investigated whether rosiglitazone could protect β-cells from hIAPP-induced cell death and the underlying mechanisms mediating such effect. Here, we show that rosiglitazone improved the viability of hIAPP-exposed INS-1E cells. This benefit is not dependent on the insulin-degrading enzyme (IDE) since rosiglitazone did not modulate IDE protein content and activity. However, rosiglitazone inhibited hIAPP fibrillation and decreased hIAPP-induced expression of C/EBP homologous protein (CHOP) (CTL 100.0 ± 8.4; hIAPP 182.7 ± 19.1; hIAPP + RGZ 102.8 ± 9.5), activating transcription factor-4 (ATF4) (CTL 100.0 ± 3.1; hIAPP 234.9 ± 19.3; hIAPP + RGZ 129.6 ± 3.0) and phospho-eukaryotic initiation factor 2-alpha (p-eIF2α) (CTL 100.0 ± 31.1; hIAPP 234.1 ± 36.2; hIAPP + RGZ 150.4 ± 18.0). These findings suggest that TZDs treatment may be a promising approach to preserve β-cell mass and function by inhibiting islet amyloid formation and decreasing endoplasmic reticulum stress hIAPP-induced.

Details

ISSN :
18790712
Volume :
928
Database :
OpenAIRE
Journal :
European journal of pharmacology
Accession number :
edsair.doi.dedup.....484ef90a5c860a1e806d6e1057fde25b