Back to Search Start Over

Anticancer Activity of Novel Plant Extracts and Compounds from Adenosma bracteosum (Bonati) in Human Lung and Liver Cancer Cells

Authors :
Van Giau Vo
Ngoc Hong Nguyen
Thi Ngoc Han Luong
Quang Thang Pham
Van Trung Phung
Qui Thanh Hoai Ta
Thuc-Huy Duong
Source :
Molecules, Volume 25, Issue 12, Molecules, Vol 25, Iss 2912, p 2912 (2020)
Publication Year :
2020
Publisher :
Multidisciplinary Digital Publishing Institute, 2020.

Abstract

Cancer is the second leading cause of death globally, and despite the advances in drug development, it is still necessary to develop new plant-derived medicines. Compared with using conventional chemical drugs to decrease the side effects induced by chemotherapy, natural herbal medicines have many advantages. The present study aimed to discover the potential cytotoxicity of ethanol extract and its derived fractions (chloroform, ethyl acetate, butanol, and aqueous) of Adenosma bracteosum Bonati. (A. bracteosum) on human large cell lung carcinoma (NCI-H460) and hepatocellular carcinoma (HepG2). Among these fractions, the chloroform showed significant activity in the inhibition of proliferation of both cancerous cells because of the presence of bioactive compounds including xanthomicrol, 5,4&rsquo<br />dihydroxy-6,7,8,3&rsquo<br />tetramethoxyflavone, and ursolic acid which were clearly revealed by nuclear magnetic resonance spectroscopy (1H-NMR, 13C-NMR, Heteronuclear Multiple Bond Coherence, and Heteronuclear Single Quantum Coherence Spectroscopy) analyses. According to the radical scavenging capacity, the 5,4&rsquo<br />tetramethoxyflavone compound (AB2) exhibited the highest anticancer activity on both NCI-H460 and HepG2 with IC50 values of 4.57 &plusmn<br />0.32 and 5.67 &plusmn<br />0.09 &micro<br />g/mL respectively, followed by the ursolic acid with the lower percent inhibition at 13.05 &plusmn<br />0.55 and 10.00 &plusmn<br />0.16 &micro<br />g/mL, respectively (p &lt<br />0.05). Remarkably, the AB2 compound induced to significant increase in the production of reactive oxygen species accompanied by attenuation of mitochondrial membrane potential, thus inducing the activation of caspase-3 activity in both human lung and liver cancer cells. These results suggest that A. bracteosum is a promising source of useful natural products and AB2 offers opportunities to develop the novel anticancer drugs.

Details

Language :
English
ISSN :
14203049
Database :
OpenAIRE
Journal :
Molecules
Accession number :
edsair.doi.dedup.....483d6fe9d8fa09144e11bc89290ccf3d
Full Text :
https://doi.org/10.3390/molecules25122912