Back to Search
Start Over
Cross-species data integration to prioritize causal genes in lipid metabolism
- Source :
- Curr Opin Lipidol
- Publication Year :
- 2021
- Publisher :
- Ovid Technologies (Wolters Kluwer Health), 2021.
-
Abstract
- Purpose of review More than one hundred loci have been identified from human genome-wide association studies (GWAS) for blood lipids. Despite the success of GWAS in identifying loci, subsequent prioritization of causal genes related to these loci remains a challenge. To address this challenge, recent work suggests that candidate causal genes within loci can be prioritized through cross-species integration using genome-wide data from the mouse. Recent findings Mouse model systems provide unparalleled access to primary tissues, like the liver, that are not readily available for human studies. Given the key role the liver plays in controlling blood lipid levels and the wealth of liver genome-wide transcript and protein data available in the mouse, these data can be leveraged. Using coexpression network analysis approaches with mouse genome-wide data, coupled with cross-species analysis of human lipid GWAS, causal genes within lipid loci can be prioritized. Prioritization through both mouse and human along with biochemical validation provide a systematic and valuable method to discover lipid metabolism genes. Summary The prioritization of causal lipid genes within GWAS loci is a challenging process requiring a multidisciplinary approach. Integration of data types across species, such as the mouse, can aid in causal gene prioritization.
- Subjects :
- 0301 basic medicine
Prioritization
Endocrinology, Diabetes and Metabolism
Genome-wide association study
Computational biology
030204 cardiovascular system & hematology
Biology
computer.software_genre
Article
Mice
03 medical and health sciences
0302 clinical medicine
Genetics
Animals
Humans
Molecular Biology
Gene
Genetic association
Nutrition and Dietetics
Human studies
Lipid metabolism
Cell Biology
Lipid Metabolism
Lipids
Causal gene
030104 developmental biology
Models, Animal
Cardiology and Cardiovascular Medicine
computer
Genome-Wide Association Study
Data integration
Subjects
Details
- ISSN :
- 14736535 and 09579672
- Volume :
- 32
- Database :
- OpenAIRE
- Journal :
- Current Opinion in Lipidology
- Accession number :
- edsair.doi.dedup.....481e2be3f80deed451543bf15a4b5510
- Full Text :
- https://doi.org/10.1097/mol.0000000000000742