Back to Search
Start Over
Observation of a bcc-like framework in polyhydrido copper nanoclusters
- Source :
- Nanoscale. 13(46)
- Publication Year :
- 2021
-
Abstract
- Cu is well-known to adopt a face-centered cubic (fcc) structure in the bulk phase. Ligand-stabilized Cu nanoclusters (NCs) with atomically precise structures are an emerging class of nanomaterials. However, it remains a great challenge to have non-fcc structured Cu NCs. In this contribution, we report the syntheses and total structure determination of six 28-nuclearity polyhydrido Cu NCs: [Cu28H16(dppp)4(RS)4(CF3CO2)8] (dppp = 1,3-bis(diphenylphosphino)propane, RSH = cyclohexylthiol, 1; tert-butylthiol, 3; and 2-thiophenethiol, 4) and [Cu28H16(dppe)4(RS)4(CH3CO2)6Cl2] (dppe = 1,2-bis(diphenylphosphino)ethane, RSH = (4-isopropyl)thiophenol, 2; 4-tert-butylbenzenethiol, 5; and 4-tert-butylbenzylmercaptan, 6). Their well-defined structures solved by X-ray single crystal diffraction reveal that these 28-Cu NCs are isostructural, and the overall metal framework is arranged as a sandwich structure with a core–shell Cu2@Cu16 unit held by two Cu5 fragments. One significant finding is that the organization of 18 Cu atoms in the Cu2@Cu16 could be regarded as an incomplete and distorted version of 3 × 2 × 2 “cutout” of the body-centered cubic (bcc) bulk phase, which was strikingly different to the fcc structure of bulk Cu. The bcc framework came as a surprise, as no bcc structures have been previously observed in Cu NCs. A comparison with the ideal bcc arrangement of 18 Cu atoms in the bcc lattice suggests that the distortion of the bcc structure results from the insertion of interstitial hydrides. The existence, number, and location of hydrides in these polyhydrido Cu NCs are established by combined experimental and DFT results. These results have significant implications for the development of high-nuclearity Cu hydride NCs with a non-fcc architecture.
Details
- ISSN :
- 20403372
- Volume :
- 13
- Issue :
- 46
- Database :
- OpenAIRE
- Journal :
- Nanoscale
- Accession number :
- edsair.doi.dedup.....47f652d9b10bd883c589b9abae7d1bb5