Back to Search
Start Over
Finite element method with local damage on the mesh
- Source :
- ESAIM: Mathematical Modelling and Numerical Analysis, ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2019, ⟨10.1051/m2an/2019023⟩, ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, In press, ⟨10.1051/m2an/2019023⟩
- Publication Year :
- 2018
- Publisher :
- arXiv, 2018.
-
Abstract
- We consider the finite element method on locally damaged meshes allowing for some distorted cells which are isolated from one another. In the case of the Poisson equation and piecewise linear Lagrange finite elements, we show that the usual a priori error estimates remain valid on such meshes. We also propose an alternative finite element scheme which is optimally convergent and, moreover, well conditioned, i.e. the conditioning number of the associated finite element matrix is of the same order as that of a standard finite element method on a regular mesh of comparable size.
- Subjects :
- Finite elements
Mesh quality
010103 numerical & computational mathematics
01 natural sciences
Piecewise linear function
Matrix (mathematics)
FOS: Mathematics
Order (group theory)
Applied mathematics
65N30, 65N12, 65N15
Polygon mesh
Mathematics - Numerical Analysis
0101 mathematics
Mathematics
Numerical Analysis
Computer Science::Information Retrieval
Applied Mathematics
A priori estimates
Numerical Analysis (math.NA)
Finite element method
010101 applied mathematics
Computational Mathematics
Modeling and Simulation
Scheme (mathematics)
A priori and a posteriori
Poisson's equation
Analysis
[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
Conditioning
Subjects
Details
- ISSN :
- 0764583X and 12903841
- Database :
- OpenAIRE
- Journal :
- ESAIM: Mathematical Modelling and Numerical Analysis, ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2019, ⟨10.1051/m2an/2019023⟩, ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, In press, ⟨10.1051/m2an/2019023⟩
- Accession number :
- edsair.doi.dedup.....47db498944f51f922ce7f273ea00e217
- Full Text :
- https://doi.org/10.48550/arxiv.1808.06350