Back to Search Start Over

Finite element method with local damage on the mesh

Authors :
Michel Duprez
Vanessa Lleras
Alexei Lozinski
Laboratoire Jacques-Louis Lions (LJLL (UMR_7598))
Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Institut Montpelliérain Alexander Grothendieck (IMAG)
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Mathématiques de Besançon (UMR 6623) (LMB)
Université de Bourgogne (UB)-Université de Franche-Comté (UFC)
Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)
The authors acknowledge the support of Région Bourgogne Franche-Comté ``Convention Région 2015C-4991. Modèles mathématiques et méthodes numériques pour l'élasticité non-linéaire'.
Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC)
Source :
ESAIM: Mathematical Modelling and Numerical Analysis, ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2019, ⟨10.1051/m2an/2019023⟩, ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, In press, ⟨10.1051/m2an/2019023⟩
Publication Year :
2018
Publisher :
arXiv, 2018.

Abstract

We consider the finite element method on locally damaged meshes allowing for some distorted cells which are isolated from one another. In the case of the Poisson equation and piecewise linear Lagrange finite elements, we show that the usual a priori error estimates remain valid on such meshes. We also propose an alternative finite element scheme which is optimally convergent and, moreover, well conditioned, i.e. the conditioning number of the associated finite element matrix is of the same order as that of a standard finite element method on a regular mesh of comparable size.

Details

ISSN :
0764583X and 12903841
Database :
OpenAIRE
Journal :
ESAIM: Mathematical Modelling and Numerical Analysis, ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2019, ⟨10.1051/m2an/2019023⟩, ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, In press, ⟨10.1051/m2an/2019023⟩
Accession number :
edsair.doi.dedup.....47db498944f51f922ce7f273ea00e217
Full Text :
https://doi.org/10.48550/arxiv.1808.06350