Back to Search Start Over

Optimization of fluorogenic RNA-based biosensors using droplet-based microfluidic ultrahigh-throughput screening

Authors :
Roger Cubi
Farah Bouhedda
Michael Ryckelynck
Alexis Autour
Architecture et Réactivité de l'ARN (ARN)
Institut de biologie moléculaire et cellulaire (IBMC)
Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Plate-Forme de Recherche en Imagerie Cellulaire de Haute-Normandie (PRIMACEN)
Université de Rouen Normandie (UNIROUEN)
Normandie Université (NU)-Normandie Université (NU)-Institute for Research and Innovation in Biomedicine (IRIB)
Normandie Université (NU)-Normandie Université (NU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Rouen Normandie (UNIROUEN)
Normandie Université (NU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
WERLING, Danièle
Normandie Université (NU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-High-tech Research Infrastructures for Life Sciences (HeRacLeS)
Normandie Université (NU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Source :
Methods, Methods, Elsevier, 2019, 161, pp.46-53. ⟨10.1016/j.ymeth.2019.03.015⟩, Methods, 2019, 161, pp.46-53. ⟨10.1016/j.ymeth.2019.03.015⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; Biosensors are biological molecules able to detect and report the presence of a target molecule by the emission of a signal. Nucleic acids are particularly appealing for the design of such molecule since their great structural plasticity makes them able to specifically interact with a wide range of ligands and their structure can rearrange upon recognition to trigger a reporting event. A biosensor is typically made of three main domains: a sensing domain that is connected to a reporting domain via a communication module in charge of transmitting the sensing event through the molecule. The communication module is therefore an instrumental element of the sensor. This module is usually empirically developed through a trial-and-error strategy with the testing of only a few combinations judged relevant by the experimenter. In this work, we introduce a novel method combining the use of droplet-based microfluidics and next generation sequencing. This method allows to functionally characterize up to a million of different sequences in a single set of experiments and, by doing so, to exhaustively test every possible sequence permutations of the communication module. Here, we demonstrate the efficiency of the approach by isolating a set of optimized RNA biosensors able to sense theophylline and to convert this recognition into fluorescence emission.

Details

Language :
English
ISSN :
10462023 and 10959130
Database :
OpenAIRE
Journal :
Methods, Methods, Elsevier, 2019, 161, pp.46-53. ⟨10.1016/j.ymeth.2019.03.015⟩, Methods, 2019, 161, pp.46-53. ⟨10.1016/j.ymeth.2019.03.015⟩
Accession number :
edsair.doi.dedup.....47d0b38d27bd8d8d8fac6896ede80a39
Full Text :
https://doi.org/10.1016/j.ymeth.2019.03.015⟩