Back to Search Start Over

A La and Nb co-doped BaTiO3 film with positive-temperature-coefficient of resistance for thermal protection of batteries

Authors :
Min Zhang
Sacha Fop
Denis Kramer
Nuria Garcia-Araez
Andrew L. Hector
Source :
Journal of Materials Chemistry A. 10:11587-11599
Publication Year :
2022
Publisher :
Royal Society of Chemistry (RSC), 2022.

Abstract

Battery safety is the number one priority for consumers and manufacturers, particularly for large-scale applications like electric vehicles and distributed energy storage systems, where the consequences of thermal runaway events can be devastating. Here we propose a novel approach to prevent battery thermal runaway by using La and Nb co-doped BaTiO3. The material is incorporated into a battery system as a thin film, having no effects on the room temperature operation, but rapidly switching off the battery current at high temperatures due to the positive temperature coefficient of resistivity (PTCR) exhibited by doped BaTiO3. La and Nb as co-dopants of BaTiO3 are found to be critical to ensure good room temperature conductivity combined with a significant PTCR effect. This work demonstrates the use of a purely inorganic PTCR material for thermal runaway protection for the first time. The high mechanical and chemical stability of the BaTiO3-based material proposed here makes it an advantageous competitor to current polymer-based protective switches.

Details

ISSN :
20507496 and 20507488
Volume :
10
Database :
OpenAIRE
Journal :
Journal of Materials Chemistry A
Accession number :
edsair.doi.dedup.....47c7ef01e5f9c16b2b32c9c808ff61a0