Back to Search Start Over

An Evolutionary and Molecular Analysis of Bmp2 Expression

Authors :
Kevin L. Abrams
Shabnam Dabirshahsahebi
Junwang Xu
Melissa B. Rogers
Celine Nativelle-Serpentini
Source :
Journal of Biological Chemistry. 279:15916-15928
Publication Year :
2004
Publisher :
Elsevier BV, 2004.

Abstract

The coding regions of many metazoan genes are highly similar. For example, homologs to the key developmental factor bone morphogenetic protein (BMP) 2 have been cloned by sequence identity from arthropods, mollusks, cnidarians, and nematodes. Wide conservation of protein sequences suggests that differential gene expression explains many of the vast morphological differences between species. To test the hypothesis that the regulatory mechanisms controlling this evolutionarily ancient and critical gene are conserved, we compared sequences flanking Bmp2 genes of several species. We identified numerous conserved noncoding sequences including some retained because the fish lineage separated 450 million years ago. We tested the function of some of these sequences in the F9 cell model system of Bmp2 expression. We demonstrated that both mouse and primate Bmp2 promoters drive a reporter gene in an expression pattern resembling that of the endogenous transcript in F9 cells. A conserved Sp1 site contributes to the retinoic acid responsiveness of the Bmp2 promoter, which lacks a classical retinoic acid response element. We have also discovered a sequence downstream of the stop codon whose conservation between humans, rodents, deer, chickens, frogs, and fish is striking. A fragment containing this region influences reporter gene expression in F9 cells. The conserved region contains elements that may mediate the half-life of the Bmp2 transcript. Together, our molecular and evolutionary analysis has identified new regulatory elements controlling Bmp2 expression.

Details

ISSN :
00219258
Volume :
279
Database :
OpenAIRE
Journal :
Journal of Biological Chemistry
Accession number :
edsair.doi.dedup.....47b98a4cc79978551f0fbdccb9fd1fa3