Back to Search Start Over

Complexity and inapproximability results for balanced connected subgraph problem

Authors :
Timothée Martinod
Benoit Darties
Rodolphe Giroudeau
Jean-Claude König
Valentin Pollet
Méthodes Algorithmes pour l'Ordonnancement et les Réseaux (MAORE)
Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Source :
Theoretical Computer Science, Theoretical Computer Science, Elsevier, 2021, 886, pp.69-83. ⟨10.1016/j.tcs.2021.07.010⟩
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

This work is devoted to the study of the Balanced Connected Subgraph Problem (BCS) from a complexity, inapproximability and approximation point of view. The input is a graph G = ( V , E ) , with each vertex having been colored, “red” or “blue”; the goal is to find a maximum connected subgraph G ′ = ( V ′ , E ′ ) from G that is color-balanced (having exactly | V ′ | / 2 red vertices and | V ′ | / 2 blue vertices). This problem is known to be NP -complete in general but polynomial in paths and trees. We propose a polynomial-time algorithm for block graph. We propose some complexity results for bounded-degree or bounded-diameter graphs, and also for bipartite graphs. We also propose inapproximability results for some graph classes, including chordal, planar, or subcubic graphs.

Details

ISSN :
03043975 and 18792294
Volume :
886
Database :
OpenAIRE
Journal :
Theoretical Computer Science
Accession number :
edsair.doi.dedup.....4782a6e64ef83a400e6b2fa53c34964e
Full Text :
https://doi.org/10.1016/j.tcs.2021.07.010