Back to Search Start Over

TREND-DB—a transcriptome-wide atlas of the dynamic landscape of alternative polyadenylation

Authors :
Denise Scherzinger
Federico Marini
Sven Danckwardt
Source :
Nucleic Acids Research
Publication Year :
2020
Publisher :
Oxford University Press (OUP), 2020.

Abstract

Alternative polyadenylation (APA) profoundly expands the transcriptome complexity. Perturbations of APA can disrupt biological processes, ultimately resulting in devastating disorders. A major challenge in identifying mechanisms and consequences of APA (and its perturbations) lies in the complexity of RNA 3’end processing, involving poorly conserved RNA motifs and multi-component complexes consisting of far more than 50 proteins. This is further complicated in that RNA 3’end maturation is closely linked to transcription, RNA processing, and even epigenetic (histone/DNA/RNA) modifications. Here we present TREND-DB (http://shiny.imbei.uni-mainz.de:3838/trend-db), a resource cataloging the dynamic landscape of APA after depletion of >170 proteins involved in various facets of transcriptional, co- and posttranscriptional gene regulation, epigenetic modifications, and further processes. TREND-DB visualizes the dynamics of transcriptome 3’end diversification (TREND) in a highly interactive manner; it provides a global APA network map and allows interrogating genes affected by specific APA-regulators, and vice versa. It also permits condition-specific functional enrichment analyses of APA-affected genes, which suggest wide biological and clinical relevance across all RNAi conditions. The implementation of the UCSC Genome Browser provides additional customizable layers of gene regulation accounting for individual transcript isoforms (e.g. epigenetics, miRNA binding sites, RNA-binding proteins). TREND-DB thereby fosters disentangling the role of APA for various biological programs, including potential disease mechanisms, and helps to identify their diagnostic and therapeutic potential.

Details

ISSN :
13624962 and 03051048
Volume :
49
Database :
OpenAIRE
Journal :
Nucleic Acids Research
Accession number :
edsair.doi.dedup.....471d581a55640b6372894c9278c11cc6
Full Text :
https://doi.org/10.1093/nar/gkaa722