Back to Search
Start Over
Reduced collagen accumulation and augmented MMP-2 activity in left ventricle of old rats submitted to high-intensity resistance training
- Source :
- Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
- Publication Year :
- 2017
-
Abstract
- Progressive fibrosis is a hallmark of the aging heart. Age-related fibrosis is modulated by endurance exercise training; however, little is known concerning the influence of resistance training (RT). Therefore we investigated the chronic effects of high-intensity RT on age-associated alterations of left ventricle (LV) structure, collagen content, matrix metalloproteinase-2 (MMP-2), and extracellular matrix-related gene expression, including transforming growth factor-β (TGF-β). Young adult (3 mo) and aged (21 mo) male Wistar rats were submitted to a RT protocol (ladder climbing with 65, 85, 95, and 100% load), three times a week for 12 wk. Forty-eight hours posttraining, arterial systolic and diastolic pressure, LV end-diastolic pressure (LVEDP) and dP/d t were recorded. LV morphology, collagen deposition, and gene expression of type I (COL-I) and type III (COL-III) collagen, MMP-2, tissue inhibitor of metalloproteinases-1 (TIMP-1), and TGF-β1 were analyzed by quantitative reverse transcriptase-PCR. MMP-2 content was assessed by zymography. Increased collagen deposition was observed in LV from aged rats. These parameters were modulated by RT and were associated with increased MMP-2 activity and decreased COL-I, TGF-β1, and TIMP-1 mRNA content. Despite the effect of RT on collagen accumulation, there was no improvement on LVEDP and maximal negative LV dP/d t of aged rats. Cardiomyocyte diameter was preserved in all experimental conditions. In conclusion, RT attenuated age-associated collagen accumulation, concomitant to the increase in MMP-2 activity and decreased expression of COL-I, TGF-β1, and TIMP-1 in LV, illustrating a cardioprotective effect of RT on ventricular structure and function. NEW & NOTEWORTHY We demonstrated the beneficial resistance-training effect against age-related left ventricle collagen accumulation in the left ventricle, which was associated with decreased type I collagen (COL-I), transforming growth factor-β1 (TGF-β1), and tissue inhibitor of metalloproteinases-1 (TIMP-1) gene expression and matrix metalloproteinase-2 (MMP-2) activity. Our findings suggest for the first time the potential effects of resistance training in modulating collagen accumulation and possibly fibrosis in the aging heart.
- Subjects :
- 0301 basic medicine
Male
Pathology
medicine.medical_specialty
Physiology
Heart Ventricles
Blood Pressure
030204 cardiovascular system & hematology
Matrix metalloproteinase
Collagen Type I
Transforming Growth Factor beta1
03 medical and health sciences
0302 clinical medicine
Physiology (medical)
medicine
Animals
Rats, Wistar
Tissue Inhibitor of Metalloproteinase-1
Ventricular Remodeling
Collagen accumulation
business.industry
High intensity
Resistance training
Resistance Training
Anatomy
Fibrosis
Rats
030104 developmental biology
medicine.anatomical_structure
Ventricle
Matrix Metalloproteinase 2
business
PRESSÃO SANGUÍNEA
Type I collagen
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
- Accession number :
- edsair.doi.dedup.....46f7be85f7ab2c870026f6d920e74ee2