Back to Search
Start Over
Integral $p$-adic \'etale cohomology of Drinfeld symmetric spaces
- Source :
- Duke Mathematical Journal, Duke Mathematical Journal, 2021, Duke Mathematical Journal, Duke University Press, 2021
- Publication Year :
- 2021
- Publisher :
- HAL CCSD, 2021.
-
Abstract
- We compute the integral p-adic etale cohomology of Drinfeld symmetric spaces of any dimension. This refines the computation of the rational p-adic etale cohomology from our recent work on Stein spaces. The main tools are: the computation of the integral de Rham cohomology from that work and, as a new tool, the integral p-adic comparison theorems of Bhatt–Morrow–Scholze and Cesnavicius–Koshikawa which replace the quasi-integral comparison theorem of Tsuji. Along the way, we compute the A inf -cohomology of Drinfeld symmetric spaces.
- Subjects :
- Comparison theorem
Pure mathematics
Mathematics - Number Theory
General Mathematics
Computation
Mathematics::Number Theory
010102 general mathematics
Dimension (graph theory)
Étale cohomology
01 natural sciences
Mathematics::Algebraic Topology
Cohomology
[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]
Mathematics - Algebraic Geometry
Mathematics::K-Theory and Homology
0103 physical sciences
De Rham cohomology
FOS: Mathematics
010307 mathematical physics
Number Theory (math.NT)
[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
0101 mathematics
Algebraic Geometry (math.AG)
Mathematics
Subjects
Details
- Language :
- English
- ISSN :
- 00127094 and 15477398
- Database :
- OpenAIRE
- Journal :
- Duke Mathematical Journal, Duke Mathematical Journal, 2021, Duke Mathematical Journal, Duke University Press, 2021
- Accession number :
- edsair.doi.dedup.....46a8eaef963bb63d7fbeca5bfc56af1a