Back to Search Start Over

Acquiring and predicting multidimensional diusion (MUDI) data: an open challenge

Authors :
Marco Pizzolato
Francesco Grussu
Andrada Ianus
Thomy Mertzanidou
Steven H. Baete
Lipeng Ning
Maryam Afzali
Fan Zhang
Carl-Fredrik Westin
Daniel C. Alexander
Santiago Aja-Fernández
Stefano B. Blumberg
Elisenda Bonet-Carne
Chantal M. W. Tax
Tomasz Pieciak
Marco Palombo
Maxime Chamberland
Derek K. Jones
Joseph V. Hajnal
Maxime Descoteaux
Jean-Philippe Thiran
Anthony N. Price
Paddy J. Slator
Hugo Larochelle
Yogesh Rathi
Lucilio Cordero-Grande
Thilo Ladner
Jana Hutter
Fabian Bogusz
Farshid Sepehrband
Bonet-Carne, ‪Elisenda
Source :
Computational Diffusion MRI, Computational Diffusion MRI ISBN: 9783030528928, Mathematics and Visualization, Mathematics and Visualization-Computational Diffusion MRI, Pizzolato, M, Palombo, M, Bonet-Carne, E, Tax, C M W, Grussu, F, Ianus, A, Bogusz, F, Pieciak, T, Ning, L, Larochelle, H, Descoteaux, M, Chamberland, M, Blumberg, S B, Mertzanidou, T, Alexander, D C, Afzali, M, Aja-Fernández, S, Jones, D K, Westin, C-F, Rathi, Y, Baete, S H, Cordero-Grande, L, Ladner, T, Slator, P J, Hajnal, J V, Thiran, J-P, Price, A N, Sepehrband, F, Zhang, F & Hutter, J 2020, Acquiring and predicting multidimensional diffusion (MUDI) data: an open challenge . in E Bonet-Carne (ed.), Computational Diffusion MRI . Springer, Mathematics and Visualization, pp. 195-208, 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, Shenzhen, China, 13/10/2019 . https://doi.org/10.1007/978-3-030-52893-5_17
Publication Year :
2020

Abstract

In magnetic resonance imaging (MRI), the image contrast is the result of the subtle interaction between the physicochemical properties of the imaged living tissue and the parameters used for image acquisition. By varying parameters such as the echo time (TE) and the inversion time (TI), it is possible to collect images that capture different expressions of this sophisticated interaction. Sensitization to diffusion summarized by the b-value - constitutes yet another explorable “dimension” to modify the image contrast which reflects the degree of dispersion of water in various directions within the tissue microstructure. The full exploration of this multidimensional acquisition parameter space offers the promise of a more comprehensive description of the living tissue but at the expense of lengthy MRI acquisitions, often unfeasible in clinical practice. The harnessing of multidimensional information passes through the use of intelligent sampling strategies for reducing the amount of images to acquire, and the design of methods for exploiting the redundancy in such information. This chapter reports the results of the MUDI challenge, comparing different strategies for predicting the acquired densely sampled multidimensional data from sub-sampled versions of it.

Details

ISBN :
978-3-030-52892-8
978-3-030-52893-5
ISSN :
16123786 and 2197666X
ISBNs :
9783030528928 and 9783030528935
Database :
OpenAIRE
Journal :
Computational Diffusion MRI
Accession number :
edsair.doi.dedup.....46a0ca6dd4e634872e3a504207f43fa0
Full Text :
https://doi.org/10.1007/978-3-030-52893-5_17