Back to Search Start Over

Extracting representations of cognition across neuroimaging studies improves brain decoding

Authors :
Mensch, Arthur
Mairal, Julien
Thirion, Bertrand
Varoquaux, Gaël
Modelling brain structure, function and variability based on high-field MRI data (PARIETAL)
Service NEUROSPIN (NEUROSPIN)
Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Apprentissage de modèles à partir de données massives (Thoth)
Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK)
Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
ANR-14-CE23-0003,MACARON,Apprentissage statistique à grande échelle et applications(2014)
European Project: 714381,H2020,SOLARIS(2017)
Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Service NEUROSPIN (NEUROSPIN)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
Source :
PLoS Computational Biology, Vol 17, Iss 5, p e1008795 (2021), PLoS Computational Biology, PLoS Computational Biology, 2021, 17 (5), pp.e1008795:1-20. ⟨10.1371/journal.pcbi.1008795⟩, PLoS Computational Biology, Public Library of Science, 2021, 17 (5), pp.e1008795:1-20. ⟨10.1371/journal.pcbi.1008795⟩
Publication Year :
2018
Publisher :
arXiv, 2018.

Abstract

Cognitive brain imaging is accumulating datasets about the neural substrate of many different mental processes. Yet, most studies are based on few subjects and have low statistical power. Analyzing data across studies could bring more statistical power; yet the current brain-imaging analytic framework cannot be used at scale as it requires casting all cognitive tasks in a unified theoretical framework. We introduce a new methodology to analyze brain responses across tasks without a joint model of the psychological processes. The method boosts statistical power in small studies with specific cognitive focus by analyzing them jointly with large studies that probe less focal mental processes. Our approach improves decoding performance for 80% of 35 widely-different functional-imaging studies. It finds commonalities across tasks in a data-driven way, via common brain representations that predict mental processes. These are brain networks tuned to psychological manipulations. They outline interpretable and plausible brain structures. The extracted networks have been made available; they can be readily reused in new neuro-imaging studies. We provide a multi-study decoding tool to adapt to new data.<br />Author summary Brain-imaging findings in cognitive neuroscience often have low statistical power, despite the availability of functional imaging data across hundreds of studies. Yet, with current analytic frameworks, combining data across studies that map responses to different tasks discards the nuances of the cognitive questions they ask. In this paper, we propose a new approach for fMRI analysis, where a predictive model is used to extract the shared information from many studies together, while respecting their original paradigms. Our method extracts cognitive representations that associate a wide variety of functions to specific brain structures. This provides quantitative improvements and cognitive insights when analyzing together 35 task-fMRI studies; the breadth of the functional data we consider is much higher than in previous work. Reusing the representations learned by our approach also improves statistical power in studies outside the training corpus.

Details

ISSN :
1553734X and 15537358
Database :
OpenAIRE
Journal :
PLoS Computational Biology, Vol 17, Iss 5, p e1008795 (2021), PLoS Computational Biology, PLoS Computational Biology, 2021, 17 (5), pp.e1008795:1-20. ⟨10.1371/journal.pcbi.1008795⟩, PLoS Computational Biology, Public Library of Science, 2021, 17 (5), pp.e1008795:1-20. ⟨10.1371/journal.pcbi.1008795⟩
Accession number :
edsair.doi.dedup.....469f7013c313f6f36a11efad46d61e82
Full Text :
https://doi.org/10.48550/arxiv.1809.06035