Back to Search Start Over

Suppressing star formation in quiescent galaxies with supermassive black hole winds

Authors :
Alexandre Roman-Lopes
Anne-Marie Weijmans
Karen L. Masters
Kate H. R. Rubin
Daniel Thomas
Francesco Belfiore
Kai Zhang
Jenny E. Greene
Joseph D. Gelfand
Niv Drory
David A. Wake
Wiphu Rujopakarn
Edmond Cheung
Yanmei Chen
Matthew A. Bershady
Michele Cappellari
Sébastien Peirani
Donald P. Schneider
Benedetta Vulcani
David R. Law
Dmitry Bizyaev
Timothy M. Heckman
Kevin Bundy
Renbin Yan
Kyle B. Westfall
Source :
Cheung, E, Bundy, K, Cappellari, M, Peirani, S, Rujopakarn, W, Westfall, K, Yan, R, Bershady, M, Greene, J E, Heckman, T M, Drory, N, Law, D R, Masters, K L, Thomas, D, Wake, D A, Weijmans, A-M, Rubin, K, Belfiore, F, Vulcani, B, Chen, Y, Zhang, K, Gelfand, J D, Bizyaev, D, Roman-Lopes, A & Schneider, D P 2016, ' Suppressing star formation in quiescent galaxies with supermassive black hole winds ', Nature, vol. 533, no. 7604, pp. 504-508 . https://doi.org/10.1038/nature18006
Publication Year :
2015

Abstract

Quiescent galaxies with little or no ongoing star formation dominate the galaxy population above $M_{*}\sim 2 \times 10^{10}~M_{\odot}$, where their numbers have increased by a factor of $\sim25$ since $z\sim2$. Once star formation is initially shut down, perhaps during the quasar phase of rapid accretion onto a supermassive black hole, an unknown mechanism must remove or heat subsequently accreted gas from stellar mass loss or mergers that would otherwise cool to form stars. Energy output from a black hole accreting at a low rate has been proposed, but observational evidence for this in the form of expanding hot gas shells is indirect and limited to radio galaxies at the centers of clusters, which are too rare to explain the vast majority of the quiescent population. Here we report bisymmetric emission features co-aligned with strong ionized gas velocity gradients from which we infer the presence of centrally-driven winds in typical quiescent galaxies that host low-luminosity active nuclei. These galaxies are surprisingly common, accounting for as much as $10\%$ of the population at $M_* \sim 2 \times 10^{10}~ M_{\odot}$. In a prototypical example, we calculate that the energy input from the galaxy's low-level active nucleus is capable of driving the observed wind, which contains sufficient mechanical energy to heat ambient, cooler gas (also detected) and thereby suppress star formation.<br />To be published in Nature on May 26th, 2016

Details

ISSN :
14764687
Volume :
533
Issue :
7604
Database :
OpenAIRE
Journal :
Nature
Accession number :
edsair.doi.dedup.....466f2b740aebea1f662108c5b0a7f931
Full Text :
https://doi.org/10.1038/nature18006