Back to Search
Start Over
Biochemical Effects of Silver Nanomaterials in Human Hepatocellular Carcinoma (HepG2) Cells
- Source :
- J Nanosci Nanotechnol
- Publication Year :
- 2020
- Publisher :
- American Scientific Publishers, 2020.
-
Abstract
- In dose–response and structure–activity studies, human hepatic HepG2 cells were exposed to between 0.01 and 300 ug/ml of different silver nanomaterials and AgNO3 for 3 days. Treatment chemicals included a custom synthesized rod shaped nano Ag, a glutathione capped nano Ag, polyvinylpyrrolidone (PVP) capped nano Ag (75 nm) from Nanocomposix and AgNO3. Various biochemical parameters were then evaluated to study cytotoxicity, cell growth, hepatic function and oxidative stress. Few indications of cytotoxicity were observed between 0.1 ug/ml and 6 ug/ml of any nano Ag. At 10 ug/ml and above, Ag containing nanomaterials caused a moderate to severe degree of cytotoxicity in HepG2 cells. Lactate dehydrogenase and aspartate transaminase activity alterations were the most sensitive cytotoxicity parameters. Some biochemical parameters were altered by exposures to both nano Ag and AgNO3 (statistically significant increases in alkaline phosphatase, gamma glutamyltranspeptidase, glutathione peroxidase and triglycerides; in contrast both glutathione reductase and HepG2 protein concentration were both decreased). Three parameters were significantly altered by nano Ag but not by AgNO3 (decreases in glucose 6-phosphate dehydrogenase and thioredoxin reductase and increases in catalase). Cytotoxicity per se did not appear to fully explain the patterns of biological responses observed. Some of the observations with the three nano Ag (increases in alkaline phosphatase, catalase, gamma glutamyltranspeptidase, as well as decreases in glucose 6-phosphate dehydrogenase and glutathione reductase) are in the same direction as HepG2 responses to other nanomaterials composed of TiO2, CeO2, SiO2, CuO and Cu. Therefore, these biochemical responses may be due to micropinocytosis of nanomaterials, membrane damage, oxidative stress and/or cytotoxicity. Decreased G6PDH (by all three nano Ag forms) and GRD activity (only nano Ag R did not cause decreases) support and are consistent with the oxidative stress theory of Ag nanomaterial action.
- Subjects :
- Carcinoma, Hepatocellular
Silver
Materials science
Glutathione reductase
Biomedical Engineering
Metal Nanoparticles
Bioengineering
02 engineering and technology
medicine.disease_cause
Article
chemistry.chemical_compound
Lactate dehydrogenase
medicine
Humans
General Materials Science
Micropinocytosis
Cytotoxicity
chemistry.chemical_classification
Glutathione peroxidase
Liver Neoplasms
technology, industry, and agriculture
Hep G2 Cells
General Chemistry
Glutathione
Silicon Dioxide
021001 nanoscience & nanotechnology
Condensed Matter Physics
Nanostructures
Oxidative Stress
Biochemistry
chemistry
Alkaline phosphatase
0210 nano-technology
Oxidative stress
Subjects
Details
- ISSN :
- 15334880
- Volume :
- 20
- Database :
- OpenAIRE
- Journal :
- Journal of Nanoscience and Nanotechnology
- Accession number :
- edsair.doi.dedup.....46562da52ec1f1efed30b8039903440b
- Full Text :
- https://doi.org/10.1166/jnn.2020.17858