Back to Search Start Over

The EN-TEx resource of multi-tissue personal epigenomes & variant-impact models

Authors :
Joel Rozowsky
Jiahao Gao
Beatrice Borsari
Yucheng T. Yang
Timur Galeev
Gamze Gürsoy
Charles B. Epstein
Kun Xiong
Jinrui Xu
Tianxiao Li
Jason Liu
Keyang Yu
Ana Berthel
Zhanlin Chen
Fabio Navarro
Maxwell S. Sun
James Wright
Justin Chang
Christopher J.F. Cameron
Noam Shoresh
Elizabeth Gaskell
Jorg Drenkow
Jessika Adrian
Sergey Aganezov
François Aguet
Gabriela Balderrama-Gutierrez
Samridhi Banskota
Guillermo Barreto Corona
Sora Chee
Surya B. Chhetri
Gabriel Conte Cortez Martins
Cassidy Danyko
Carrie A. Davis
Daniel Farid
Nina P. Farrell
Idan Gabdank
Yoel Gofin
David U. Gorkin
Mengting Gu
Vivian Hecht
Benjamin C. Hitz
Robbyn Issner
Yunzhe Jiang
Melanie Kirsche
Xiangmeng Kong
Bonita R. Lam
Shantao Li
Bian Li
Xiqi Li
Khine Zin Lin
Ruibang Luo
Mark Mackiewicz
Ran Meng
Jill E. Moore
Jonathan Mudge
Nicholas Nelson
Chad Nusbaum
Ioann Popov
Henry E. Pratt
Yunjiang Qiu
Srividya Ramakrishnan
Joe Raymond
Leonidas Salichos
Alexandra Scavelli
Jacob M. Schreiber
Fritz J. Sedlazeck
Lei Hoon See
Rachel M. Sherman
Xu Shi
Minyi Shi
Cricket Alicia Sloan
J Seth Strattan
Zhen Tan
Forrest Y. Tanaka
Anna Vlasova
Jun Wang
Jonathan Werner
Brian Williams
Min Xu
Chengfei Yan
Lu Yu
Christopher Zaleski
Jing Zhang
Kristin Ardlie
J Michael Cherry
Eric M. Mendenhall
William S. Noble
Zhiping Weng
Morgan E. Levine
Alexander Dobin
Barbara Wold
Ali Mortazavi
Bing Ren
Jesse Gillis
Richard M. Myers
Michael P. Snyder
Jyoti Choudhary
Aleksandar Milosavljevic
Michael C. Schatz
Bradley E. Bernstein
Roderic Guigó
Thomas R. Gingeras
Mark Gerstein
Publication Year :
2023
Publisher :
Elsevier, 2023.

Abstract

Understanding how genetic variants impact molecular phenotypes is a key goal of functional genomics, currently hindered by reliance on a single haploid reference genome. Here, we present the EN-TEx resource of 1,635 open-access datasets from four donors (∼30 tissues × ∼15 assays). The datasets are mapped to matched, diploid genomes with long-read phasing and structural variants, instantiating a catalog of >1 million allele-specific loci. These loci exhibit coordinated activity along haplotypes and are less conserved than corresponding, non-allele-specific ones. Surprisingly, a deep-learning transformer model can predict the allele-specific activity based only on local nucleotide-sequence context, highlighting the importance of transcription-factor-binding motifs particularly sensitive to variants. Furthermore, combining EN-TEx with existing genome annotations reveals strong associations between allele-specific and GWAS loci. It also enables models for transferring known eQTLs to difficult-to-profile tissues (e.g., from skin to heart). Overall, EN-TEx provides rich data and generalizable models for more accurate personal functional genomics.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....464939170ba93b49ee4e474d325702f1