Back to Search Start Over

Using a bio-scanner and 3D printing to create an innovative custom made approach for the management of complex entero-atmospheric fistulas

Authors :
Luis Tallón Aguilar
Juan Carlos Puyana
Javier Padillo-Ruiz
Felipe Pareja Ciuró
José Tinoco González
Francisco José Calero Castro
Andrés Padillo Eguía
Virginia Durán Muñoz-Cruzado
Source :
Scientific Reports, Vol 10, Iss 1, Pp 1-13 (2020), Scientific Reports
Publication Year :
2020
Publisher :
Nature Publishing Group, 2020.

Abstract

Enteroatmospheric fistulae are challenging clinical conditions that require surgical expertise and that can result in chronic debilitating conditions placing the patient in a vicious cycle characterized by non healing wounds and malnutrition. They are a complex entity that presents great variability depending on the number, shape, and size of the fistulous orifices, their debit, and the dimensions of the wound. This means that, at present, there is no device that adapts to the anatomical characteristics of each patient and manages to control the spillage of intestinal effluvium from the wound. The aim of this study is to describe the manufacturing technique and to assess the preliminary results of a custom device designed through bioscanner imaging and manufactured using 3D printing for use with negative pressure wound therapy (NPWT) in the management of enteroatmospheric fistula. A proof of concept is given, and the design of the device is presented for the first time. After obtaining images of each fistula with a bioscanner, a personalised device was designed for each patient by 3D printing shape of a prism and a hollow base, taking into account the dimensions of the fistulous area in order to perform a floating ostomy to isolate the wound from the debit enteric. The polycaprolactone (PCL) device was placed including inside the fistulous surface and surrounding it with the NPWT system in order to accelerate wound healing.

Details

Language :
English
ISSN :
20452322
Volume :
10
Issue :
1
Database :
OpenAIRE
Journal :
Scientific Reports
Accession number :
edsair.doi.dedup.....46416c46b20fc211cacb2223b276fde1
Full Text :
https://doi.org/10.1038/s41598-020-74213-7