Back to Search Start Over

Elevated CO2 and aboveground–belowground herbivory by the clover root weevil

Authors :
Scott N. Johnson
James W. McNicol
Source :
Oecologia. 162:209-216
Publication Year :
2009
Publisher :
Springer Science and Business Media LLC, 2009.

Abstract

Predicted increases in atmospheric carbon dioxide (CO(2)) concentrations are expected to increase primary productivity in many terrestrial ecosystems, which could lead to plants becoming N limited. Studies suggest that legumes may partially overcome this by increasing biological nitrogen fixation. However, these studies have not yet considered how these changes may be affected by the altered dynamics of insect herbivores feeding on the plant. This study investigated how elevated CO(2) (700 microl l(-1)) affected the clover root weevil (Sitona lepidus), a significant pest of white clover (Trifolium repens). Adults feed on leaves aboveground where they lay eggs; soil-dwelling larvae initially feed on root nodules that house N(2)-fixing bacteria. Foliar C:N ratios rose by 9% at elevated CO(2), but the biggest responses were observed belowground, with increases in root mass (85% greater) and nodule abundance (220% more abundant). Root C:N ratios increased significantly from 10.95 to 11.60 under elevated CO(2), which increased even further to 13.13 when nodules were attacked by larval S. lepidus. Adult S. lepidus consumed significantly more leaf tissue at elevated CO(2) (0.47 cm(2) day(-1)) compared with ambient CO(2) (0.35 cm(2) day(-1)), suggesting compensatory feeding, but laid 23% fewer eggs at elevated CO(2). Even though fewer eggs were laid at elevated CO(2), 38% more larvae were recovered suggesting that larval survival was much better under elevated CO(2). Increased larval abundance and performance at elevated CO(2) were positively correlated with the number of nodules available. In conclusion, reduced foliar quality at elevated CO(2) was generally disadvantageous for adult S. lepidus living aboveground, but extremely beneficial for S. lepidus larvae living belowground, due to the enhanced nodulation. Climate change may, therefore, enhance biological nitrogen fixation by T. repens, but potential benefits (e.g. provision of N without chemical fertilizers) may be undermined by larger populations of S. lepidus larvae belowground.

Details

ISSN :
14321939 and 00298549
Volume :
162
Database :
OpenAIRE
Journal :
Oecologia
Accession number :
edsair.doi.dedup.....4637916175e648caa885d55d329f11e8
Full Text :
https://doi.org/10.1007/s00442-009-1428-4