Back to Search Start Over

Metasurface-generated complex 3-dimensional optical fields for interference lithography

Authors :
Hyounghan Kwon
Andrei Faraon
Seyedeh Mahsa Kamali
Ehsan Arbabi
Source :
Proceedings of the National Academy of Sciences of the United States of America
Publication Year :
2019
Publisher :
Proceedings of the National Academy of Sciences, 2019.

Abstract

Significance Fast submicrometer-scale 3D printing techniques are of interest for various applications ranging from photonics and electronics to tissue engineering. Interference lithography is a versatile 3D printing method with the ability to generate complicated nanoscale structures. Its application, however, has been hindered by either the complicated setups in multibeam lithography that cause sensitivity and impede scalability or the limited level of control over the fabricated structure achievable with mask-assisted processes. Here, we show that metasurface masks can generate complex volumetric intensity distributions with submicrometer scales for fast and scalable 3D printing. These results push the limits of optical devices in controlling the light intensity distribution and significantly increase the realm of possibilities for 3D printing.<br />Fast, large-scale, and robust 3-dimensional (3D) fabrication techniques for patterning a variety of structures with submicrometer resolution are important in many areas of science and technology such as photonics, electronics, and mechanics with a wide range of applications from tissue engineering to nanoarchitected materials. From several promising 3D manufacturing techniques for realizing different classes of structures suitable for various applications, interference lithography with diffractive masks stands out for its potential to fabricate complex structures at fast speeds. However, the interference lithography masks demonstrated generally suffer from limitations in terms of the patterns that can be generated. To overcome some of these limitations, here we propose the metasurface-mask–assisted 3D nanofabrication which provides great freedom in patterning various periodic structures. To showcase the versatility of this platform, we design metasurface masks that generate exotic periodic lattices like gyroid, rotated cubic, and diamond structures. As a proof of concept, we experimentally demonstrate a diffractive element that can generate the diamond lattice.

Details

ISSN :
10916490 and 00278424
Volume :
116
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences
Accession number :
edsair.doi.dedup.....46083920e294a40eded1fd09275751b0