Back to Search Start Over

An in-depth analysis shows a hidden atherogenic lipoprotein profile in non-diabetic chronic kidney disease patients

Authors :
José Luis Górriz
Jose M. Valdivielso
Elvira Fernández
Núria Alonso
Teresa Bretones
David Arroyo
Didac Mauricio
Núria Amigó
Milica Bozic
Carles Forné
Marcelino Bermúdez-López
María Dolores del Pino y Pino
Serafí Cambray
Source :
EXPERT OPINION ON THERAPEUTIC TARGETS, r-IIB SANT PAU. Repositorio Institucional de Producción Científica del Instituto de Investigación Biomédica Sant Pau, instname, Expert Opinion on Therapeutic Targets, r-IGTP. Repositorio Institucional de Producción Científica del Instituto de Investigación Germans Trias i Pujol, r-INCLIVA. Repositorio Institucional de Producción Científica de INCLIVA
Publication Year :
2019
Publisher :
TAYLOR & FRANCIS LTD, 2019.

Abstract

Background: Chronic kidney disease (CKD) is an independent risk factor for atherosclerotic disease. We hypothesized that CKD promotes a proatherogenic lipid profile modifying lipoprotein composition and particle number. Methods: Cross-sectional study in 395 non-diabetic individuals (209 CKD patients and 186 controls) without statin therapy. Conventional lipid determinations were combined with advanced lipoprotein profiling by nuclear magnetic resonance, and their discrimination ability was assessed by machine learning. Results: CKD patients showed an increase of very-low-density (VLDL) particles and a reduction of LDL particle size. Cholesterol and triglyceride content of VLDLs and intermediate-density (IDL) particles increased. However, low-density (LDL) and high-density (HDL) lipoproteins gained triglycerides and lost cholesterol. Total-Cholesterol, HDL-Cholesterol, LDL-Cholesterol, non-HDL-Cholesterol and Proprotein convertase subtilisin-kexin type (PCSK9) were negatively associated with CKD stages, whereas triglycerides, lipoprotein(a), remnant cholesterol, and the PCSK9/LDL-Cholesterol ratio were positively associated. PCSK9 was positively associated with total-Cholesterol, LDL-Cholesterol, LDL-triglycerides, LDL particle number, IDL-Cholesterol, and remnant cholesterol. Machine learning analysis by random forest revealed that new parameters have a higher discrimination ability to classify patients into the CKD group, compared to traditional parameters alone: area under the ROC curve (95% CI), .789 (.711, .853) vs .687 (.611, .755). Conclusions: non-diabetic CKD patients have a hidden proatherogenic lipoprotein profile.

Details

ISSN :
14728222
Database :
OpenAIRE
Journal :
EXPERT OPINION ON THERAPEUTIC TARGETS, r-IIB SANT PAU. Repositorio Institucional de Producción Científica del Instituto de Investigación Biomédica Sant Pau, instname, Expert Opinion on Therapeutic Targets, r-IGTP. Repositorio Institucional de Producción Científica del Instituto de Investigación Germans Trias i Pujol, r-INCLIVA. Repositorio Institucional de Producción Científica de INCLIVA
Accession number :
edsair.doi.dedup.....46035e99aa6bb2330edec22b0b5dd124