Back to Search
Start Over
An in-depth analysis shows a hidden atherogenic lipoprotein profile in non-diabetic chronic kidney disease patients
- Source :
- EXPERT OPINION ON THERAPEUTIC TARGETS, r-IIB SANT PAU. Repositorio Institucional de Producción Científica del Instituto de Investigación Biomédica Sant Pau, instname, Expert Opinion on Therapeutic Targets, r-IGTP. Repositorio Institucional de Producción Científica del Instituto de Investigación Germans Trias i Pujol, r-INCLIVA. Repositorio Institucional de Producción Científica de INCLIVA
- Publication Year :
- 2019
- Publisher :
- TAYLOR & FRANCIS LTD, 2019.
-
Abstract
- Background: Chronic kidney disease (CKD) is an independent risk factor for atherosclerotic disease. We hypothesized that CKD promotes a proatherogenic lipid profile modifying lipoprotein composition and particle number. Methods: Cross-sectional study in 395 non-diabetic individuals (209 CKD patients and 186 controls) without statin therapy. Conventional lipid determinations were combined with advanced lipoprotein profiling by nuclear magnetic resonance, and their discrimination ability was assessed by machine learning. Results: CKD patients showed an increase of very-low-density (VLDL) particles and a reduction of LDL particle size. Cholesterol and triglyceride content of VLDLs and intermediate-density (IDL) particles increased. However, low-density (LDL) and high-density (HDL) lipoproteins gained triglycerides and lost cholesterol. Total-Cholesterol, HDL-Cholesterol, LDL-Cholesterol, non-HDL-Cholesterol and Proprotein convertase subtilisin-kexin type (PCSK9) were negatively associated with CKD stages, whereas triglycerides, lipoprotein(a), remnant cholesterol, and the PCSK9/LDL-Cholesterol ratio were positively associated. PCSK9 was positively associated with total-Cholesterol, LDL-Cholesterol, LDL-triglycerides, LDL particle number, IDL-Cholesterol, and remnant cholesterol. Machine learning analysis by random forest revealed that new parameters have a higher discrimination ability to classify patients into the CKD group, compared to traditional parameters alone: area under the ROC curve (95% CI), .789 (.711, .853) vs .687 (.611, .755). Conclusions: non-diabetic CKD patients have a hidden proatherogenic lipoprotein profile.
- Subjects :
- 0301 basic medicine
Male
Very low-density lipoprotein
Magnetic Resonance Spectroscopy
Clinical Biochemistry
Machine Learning
PCSK9
chemistry.chemical_compound
0302 clinical medicine
Lp(a)
Risk Factors
Drug Discovery
Prospective Studies
medicine.diagnostic_test
Middle Aged
Lipids
030220 oncology & carcinogenesis
Molecular Medicine
Female
lipids (amino acids, peptides, and proteins)
Proprotein Convertase 9
Adult
medicine.medical_specialty
lipoprotein subfractions
Lipoproteins
03 medical and health sciences
Internal medicine
medicine
Humans
Risk factor
Renal Insufficiency, Chronic
Aged
Pharmacology
business.industry
Cholesterol
dyslipidemia
medicine.disease
Atherosclerosis
030104 developmental biology
Endocrinology
Cross-Sectional Studies
chemistry
Case-Control Studies
business
Lipid profile
Dyslipidemia
chronic kidney disease
Lipoprotein
Kidney disease
Subjects
Details
- ISSN :
- 14728222
- Database :
- OpenAIRE
- Journal :
- EXPERT OPINION ON THERAPEUTIC TARGETS, r-IIB SANT PAU. Repositorio Institucional de Producción Científica del Instituto de Investigación Biomédica Sant Pau, instname, Expert Opinion on Therapeutic Targets, r-IGTP. Repositorio Institucional de Producción Científica del Instituto de Investigación Germans Trias i Pujol, r-INCLIVA. Repositorio Institucional de Producción Científica de INCLIVA
- Accession number :
- edsair.doi.dedup.....46035e99aa6bb2330edec22b0b5dd124